Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
World Journal of Agricultural Research. 2021, 9(3), 92-99
DOI: 10.12691/WJAR-9-3-3
Review Article

Importance, Genetic Diversity and Prospects for Varietal Improvement of Ginger (Zingiber officinale Roscoe) in Burkina Faso

Korotimi Deme1, Moumouni Konate2, , Hamed Mahamadi Ouedraogo1, Jacob Sanou2 and Mahamadou Sawadogo1

1Joseph Ki Zerbo University, Biosciences Laboratory, 03 BP 7021 Ouagadougou 03, Burkina Faso

2Institute of Environment and Agriculture Research (INERA), Centre for Specialisation in Fruits and Vegetables (CNS-FL), DRREA-Ouest Farakoba, 01 BP 910 Bobo-Dioulasso, Burkina Faso

Pub. Date: December 07, 2021

Cite this paper

Korotimi Deme, Moumouni Konate, Hamed Mahamadi Ouedraogo, Jacob Sanou and Mahamadou Sawadogo. Importance, Genetic Diversity and Prospects for Varietal Improvement of Ginger (Zingiber officinale Roscoe) in Burkina Faso. World Journal of Agricultural Research. 2021; 9(3):92-99. doi: 10.12691/WJAR-9-3-3

Abstract

Ginger (Zingiber officinale Rosc.) is a very important spice for rural and urban communities in Burkina Faso. Cultivation of ginger is mainly practiced by traditional farmers, and its commercialisation offers substantial income to farmers, traders and processors. The tuber contains enormous medicinal and nutritional potential, and can thus contribute to qualitative improvement of the diet of consumers. Despite the many advantages of this plant, it remained underexploited due to insufficient knowledge of cultivation methods, its cycle duration and its water requirement, which confines the crop mainly to the western region of Burkina Faso. Such under-exploitation has been exacerbated due to little attention dedicated to ginger research in the country. Therefore, preservation and improvement of ginger quality represent an important challenge for the various actors of this crop’s industry. The present review highlights the importance of ginger, its role in crop diversification, its medicinal and nutritional properties, as well as the future areas of selection and genetic improvement of this species in Burkina Faso.

Keywords

spice, variability, conservation, breeding, neglected crop

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Foine A. Les Zingiberaceae en phytothérapie: l’exemple du gingembre. 2017.
 
[2]  PIP. Guide de bonnes pratiques phytosanitaires pour le gingembre (Zingiber officinale) en pays ACP.pdf. 2009.
 
[3]  Mohd-Yusof YA, Sieh S, Murad NA, Wan-Ngah WZ. Anticancer effect of ginger extract (Zingiber officinale) on liver cancer cell lines. Malays J Biochem Mol Biol 2002; 7: 38-42.
 
[4]  Zhang GF, Yang ZB, Wang Y, Yang WR, Jiang SZ, Gai GS. Effects of ginger root (Zingiber officinale) processed to different particle sizes on growth performance, antioxidant status, and serum metabolites of broiler chickens. Poult Sci 2009; 88: 2159-2166.
 
[5]  FIRCA. La filière gingembre. Côte d’Ivoire.
 
[6]  FAO. La situation mondiale de l’alimentation et de l’agriculture 2017: mettre les systèmes alimentaires au service d’une transformation rurale inclusive. Roma: FAO.
 
[7]  MAAH. Guide de production du gingembre (Zingiber officinale Roscoe). Burkina Faso.
 
[8]  Nandkangré H. Caractérisation génétique et identification de variétés de gingembre (Zingiber officinale Rosc.) adaptées au système de production au Burkina Faso. 2016.
 
[9]  Ebert A W. Potential of Underutilized Traditional Vegetables and Legume Crops to Contribute to Food and Nutritional Security, Income and More Sustainable Production Systems. Sustainability 2014; 6: 319-335.
 
[10]  Padulosi S, Leaman D, Quek P. Challenges and Opportunities in Enhancing the Conservation and Use of Medicinal and Aromatic Plants. J Herbs Spices Med Plants 2002; 9: 243-267.
 
[11]  Randrianarivelo MF. Suivi phénologique et amélioration de la production du gingembre (Zingiber officinale Roscoe).Cas de la région Atsinanana. Université D’Antananarivo.
 
[12]  Prameela R, Venkaiah M. The Gingers of the north coastal Andhra Pradesh, India. Trop Plant Res 2018; 5: 53-60.
 
[13]  Butin A. Le gingembre: de son utilisation ancestrale à un avenir prometteur. 2017.
 
[14]  Meenu G, Jebasingh T. Diseases of Ginger. In: Wang H, editor. Ginger Cultivation and Its Antimicrobial and Pharmacological Potentials. IntechOpen, 2020.
 
[15]  Pinson C. Gingembre et curcuma: un concentré de bienfaits pour votre santé et votre beauté. Paris: Eyrolles.
 
[16]  Kaushal M, Gupta A, Vaidya D, Gupta M. Postharvest Management and Value Addition of Ginger (Zingiber officinale Roscoe): A Review. Int J Environ Agric Biotechnol 2017; 2: 397-412.
 
[17]  Shao X, Lishuang L, Tiffany P, Wu H, Ho C-T, Sang S. Quantitative Analysis of Ginger Components in Commercial Products Using Liquid Chromatography with Electrochemical Array Detection. J. Agric. Food Chem. 2010; 12608-12614.
 
[18]  Sangwan A, Kawatra A, Sehgal S. Nutritional composition of ginger powder prepared using various drying methods. J Food Sci Technol 2014; 51: 2260-2262.
 
[19]  CTA. gingembre, une épice en vogue. Mag Dév Agric Rural Pays ACP 2012.
 
[20]  Agrahari P, Panda P, Verma NK, Khan WU, Darbari S. A brief study on Zingiber officinale-A review. 2015; 9.
 
[21]  Akimoto M, Iizuka M, Kanematsu R, Yoshida M, Takenaga K. Anticancer Effect of Ginger Extract against Pancreatic Cancer Cells Mainly through Reactive Oxygen Species-Mediated Autotic Cell Death. PLOS ONE 2015: 22.
 
[22]  Bischoff-Kont I, Fürst R. Benefits of Ginger and Its Constituent 6-Shogaol in Inhibiting Inflammatory Processes. Pharmaceuticals 2021; 14: 571.
 
[23]  da Silveira Vasconcelos M, Mota EF, Gomes-Rochette NF, Nunes-Pinheiro DCS, Nabavi SM, de Melo DF. Ginger (Zingiber officinale Roscoe). In: Nonvitamin and Nonmineral Nutritional Supplements. Elsevier, 2019: 235-239.
 
[24]  D’Souza SP, Chavannavar SV, Kanchanashri B, Niveditha SB. Pharmaceutical Perspectives of Spices and Condiments as Alternative Antimicrobial Remedy. J Evid-Based Complement Altern Med 2017; 22: 1002-1010.
 
[25]  Ezzat SM, Ezzat MI, Okba MM, Menze ET, Abdel-Naim AB. The hidden mechanism beyond ginger ( Zingiber officinale Rosc.) potent in vivo and in vitro anti-inflammatory activity. J Ethnopharmacol 2018; 214: 113-123.
 
[26]  Shukla Y, Singh M. Cancer preventive properties of ginger: A brief review. Food Chem Toxicol 2007; 45: 683-690.
 
[27]  Divakar MadhuC, Al-Siyabi A, Varghese ShirleyS, Al- Rubaie M. The Practice of Ethnomedicine in the Northern and Southern Provinces of Oman. Oman Med J 2016; 31: 245-252.
 
[28]  Pramono S. Utilisation and Functional Components Evaluation of Ginger. In: Wang H, editor. Ginger Cultivation and Its Antimicrobial and Pharmacological Potentials. IntechOpen, 2020.
 
[29]  Eleazu C, Amadi C, Iwo G, Nwosu P, Ironua C. Chemical Composition and Free Radical Scavenging Activities of 10 Elite Accessions of Ginger (Zingiber officinale Roscoe). J Clin Toxicol 2013; 03.
 
[30]  Wang J, Ke W, Bao R, Hu X, Chen F. Beneficial effects of ginger Zingiber officinale Roscoe on obesity and metabolic syndrome: a review: Beneficial effects of ginger in metabolic syndrome. Ann N Y Acad Sci 2017; 1398: 83-98.
 
[31]  Ashraf K, Sultan S, Shah SAA. Phychemistry, phytochemical, pharmacological and molecular study of Zingiber officinale Roscoe: a review. Int J Pharm Pharm Sci 2017; 9: 8.
 
[32]  Oladunni Balogun F, Tayo AdeyeOluwa E, Omotayo Tom Ashafa A. Pharmacological Potentials of Ginger. In: Wang H, editor. Ginger Cultivation and Its Antimicrobial and Pharmacological Potentials. IntechOpen, 2020.
 
[33]  Sp N, Kang DY, Lee J-M, Bae SW, Jang K-J. Potential Antitumor Effects of 6-Gingerol in p53-Dependent Mitochondrial Apoptosis and Inhibition of Tumor Sphere Formation in Breast Cancer Cells. Int J Mol Sci 2021; 22: 4660.
 
[34]  Xu S, Zhang H, Liu T, Yang W, Lv W, He D, Guo P, Li L. 6-Gingerol induces cell-cycle G1-phase arrest through AKT–GSK 3β–cyclin D1 pathway in renal-cell carcinoma. Cancer Chemother Pharmacol 2020; 85: 379-390.
 
[35]  Dosch AR, Dai X, Reyzer ML, Mehra S, Srinivasan S, Willobee BA, Kwon D, Kashikar N, Caprioli R, Merchant NB, Nagathihalli NS. Combined Src/EGFR Inhibition Targets STAT3 Signaling and Induces Stromal Remodeling to Improve Survival in Pancreatic Cancer. Mol Cancer Res 2020; 18: 623-631.
 
[36]  Lee S-H, Cekanova M, Baek SJ. Multiple mechanisms are involved in 6-gingerol-induced cell growth arrest and apoptosis in human colorectal cancer cells. Mol Carcinog 2008; 47: 197-208.
 
[37]  Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol 2019; 25: 101084.
 
[38]  Rastogi N, Duggal S, Singh SK, Porwal K, Srivastava VK, Maurya R, Bhatt MLB, Mishra DP. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-Gingerol in cervical cancer cells. Oncotarget 2015; 6: 43310-43325.
 
[39]  Zivarpour P, Nikkhah E, Maleki Dana P, Asemi Z, Hallajzadeh J. Molecular and biological functions of gingerol as a natural effective therapeutic drug for cervical cancer. J Ovarian Res 2021; 14: 43.
 
[40]  Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem Toxicol 2008; 46: 409-420.
 
[41]  Liu Y, Liu J, Zhang Y. Research Progress on Chemical Constituents of Zingiber officinale Roscoe. BioMed Res Int 2019; 2019: 1-21.
 
[42]  Wilson R, Haniadka R, Sandhya P, Palatty PL, Baliga MS. Ginger (Zingiber officinale Roscoe) the Dietary Agent in Skin Care: A Review. In: Bioactive Dietary Factors and Plant Extracts in Dermatology. Totowa, NJ: Humana Press, 2013: 103-111.
 
[43]  Grzanna R, Lindmark L, Frondoza CG. Ginger—An Herbal Medicinal Product with Broad Anti-Inflammatory Actions. J Med Food 2005; 8: 125-132.
 
[44]  Prasad S, Tyagi AK. Ginger and Its Constituents: Role in Prevention and Treatment of Gastrointestinal Cancer. Gastroenterol Res Pract 2015; 2015: 1-11.
 
[45]  Gigon F. Le gingembre, une épice contre la nausée. Phytothérapie. 2012; 87-91.
 
[46]  Wohlmuth H, Smith MK, Brooks LO, Myers SP, Leach DN. Essential Oil Composition of Diploid and Tetraploid Clones of Ginger ( Zingiber officinale Roscoe) Grown in Australia. J Agric Food Chem 2006; 54: 1414-1419.
 
[47]  DGPER. Rapport diagnostique de la filière gingembre et ses chaines de valeurs. Burkina Faso: MAAH
 
[48]  Ba A, Konipo O, Diarrisso T, Dembele B, Kone AK, Konte MS, Coulibaly D. Déterminants des stratégies de diversification des cultures dans les exploitations agricoles en zone cotonnière du Mali. 2019; 01: 98-107.
 
[49]  Kpadonou GE, Akponikpè PBI, Adanguidi J, Zougmore RB, Adjogboto A, Likpete DD, Sossavihotogbe CNA, Djenontin AJ, Baco MN. What best practices of Climate Smart Agriculture (CSA) for vegetable crops production in West Africa? Sci Nat Agron 2019; 31-48.
 
[50]  Shin S-D, Lee M-S, Lee J-H. Quality characteristics of grain syrups containing ginger (Zingiber officinale). Food Sci Technol 2021; 5.
 
[51]  Vijayan AK, Gudade BA, Gautam A, Deka TN, Bora SS, Dhanapal K, Remashree AB. Cultivation of Ginger in Sikkim under an Organic System. In: Ginger Cultivation and Its Antimicrobial and Pharmacological Potentials. IntechOpen, 2020.
 
[52]  Nandkangre H, Ouedraogo M, Sawadogo M. Caractérisation du système de production du gingembre (Zingiber officinale Rosc.) au Burkina Faso : Potentialités, contraintes et perspectives. Int J Biol Chem Sci 2015; 9: 861.
 
[53]  Gerbaud P. Les petits exotiques. CIRAD-Fruitrop 2008; 8.
 
[54]  Sharma Y. Ginger (Zingiber officinale)-An elixir of life a review. Pharma Innov J 2017; 6: 22-27.
 
[55]  Belattar R. Application des marqueurs moléculaires à la gestion des ressources génétiques d’une accession de blé dur algérien (Triticum durum Desf.). 2018.
 
[56]  Chowdhury S, Pal K, Chakraborty M, Chakraborty S, Mandal S, Pandit GKr, Maitra S, Sahana N. Conservation and In Vitro Propagation of an Endangered Wild Turmeric (Curcuma caesia Roxb.) Species from Sub - Himalayan Terai Region of West Bengal. Int J Curr Microbiol Appl Sci 2020; 9: 2132-2140.
 
[57]  Jatoi SA, Kikuchi A, Mimura M, San-San-Yi, Watanabe KN. Relationships of Zingiber species, and genetic variability assessment in ginger (Zingiber officinale) accessions from ex-situ genebank, on-farm and rural markets. Breed Sci 2008; 58: 261-270.
 
[58]  FAO. culture de tissus pour produire du gingembre indemne de maladie en Jamaîque. 2020. Available from: http://www.fao.org/fao-stories/article/fr/c/1319907/.
 
[59]  Nandkangré H, Ouedraogo M, Bado S, Zida SF, Kima AS, Sawadogo M. Genetic diversity analysis of Burkina Faso ginger (Zingiber officinale Rosc.) landraces using microsatellite markers. Int. J. Curr. Res. 2017; 50122-50126.
 
[60]  Parthasarathy VA, Srinivasan V, Nair RR, Zachariah TJ, Kumar A, Prasath D. Ginger: Botany and Horticulture. In: Janick J, editor. Horticultural Reviews. First Edition. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012: 273-388.
 
[61]  Ochatt S, Jain S Mohan (eds). Breeding of Neglected and Under-Utilized Crops, Spices, and Herbs. 0 ed. CRC Press.
 
[62]  Abdou R, Bakasso Y, Adam T, Saadou M, Baudoin J-P. Biologie, diversité et outils pour l’analyse de la diversité génétique de l’oignon, Allium cepa L. (synthèse bibliographique). Biotechnol Agron Soc Env 2015; 19: 184-196.
 
[63]  Khennaoui A. Diversité phénotypique et moléculaire du blé dur cultivé en Algérie : identification et caractérisation des accessions. 2018.
 
[64]  Lefort-Buson M, Hebert Y, Damerval C. Les outils d’évaluation de la diversité génétique et phénotypique. Agronomie 1988; 8: 173-178.
 
[65]  Adjatin A, Akognon C, Balogoun D, Tossa C, Yedomonhan H, Dansi A. [Diversity and ethnobotanical characteristics of aromatic plants and spices consumed in Central Benin. Int J Innov Appl Stud 2020; 30: 260-273.
 
[66]  Zambrano Blanco E, Baldin Pinheiro J. Agronomic evaluation and clonal selection of ginger genotypes (Zingiber officinale Roseoe) in Brazil. Agron Colomb 2017; 35: 275-284.
 
[67]  Das A, Sahoo RK, Barik DP, Subudhi E. Identification of Duplicates in Ginger Germplasm Collection from Odisha Using Morphological and Molecular Characterization. Proc Natl Acad Sci India Sect B Biol Sci 2020; 90: 1057-1066.
 
[68]  Jatoi SA, Watanabe KN. Diversity analysis and relationships among ginger landraces. Pak J Bot 2013; 45: 1203-1214.
 
[69]  Wang L, Gao F, Xu K, Li X. Natural occurrence of mixploid ginger (Zingiber officinale Rosc.) in China and its morphological variations. Sci Hortic 2014; 172: 54-60.
 
[70]  Das A, Kesari V, Satyanarayana VM, Parida A, Mitra S, Rangan L. Genetic diversity in ecotypes of the scarce wild medicinal crop Zingiber moran revealed by ISSR and AFLP marker analysis and chromosome number assessment. Plant Biosyst - Int J Deal Asp Plant Biol 2015; 149: 111-120.
 
[71]  Wahyuni S. Genetic relationships among ginger accessions based on AFLP marker. 2003; 9.
 
[72]  Zambrano Blanco E, Bajay MM, Siqueira MVBM, Zucchi MI, Pinheiro JB. Genetic diversity and structure of Brazilian ginger germplasm (Zingiber officinale) revealed by AFLP markers. Genetica 2016; 144: 627-638.
 
[73]  Das A, Gaur M, Barik DP, Subudhi E. Genetic diversity analysis of 60 ginger germplasm core accessions using ISSR and SSR markers. Plant Biosyst - Int J Deal Asp Plant Biol 2017; 151: 822-832.
 
[74]  Lee S-Y, Fai WK, Zakaria M, Ibrahim H, Othman RY, Gwag J-G, Rao V. R, Park Y-J. Characterization of polymorphic microsatellite markers, isolated from ginger (Zingiber officinale Rosc.). Mol. Ecol. Notes. 2007; 1009-1011.
 
[75]  Ismail NA, Rafii MY, Mahmud TMM, Hanafi MM, Miah G. Molecular markers: a potential resource for ginger genetic diversity studies. Mol Biol Rep 2016; 43: 1347-1358.
 
[76]  Babu KN, Suraby EJ, Cissin J, Minoo D, Pradeepkumar T, Parthasarathy VA, Peter KV. Status of transgenics in Indian spices. J Trop Agric 2013; 5: 1-14.
 
[77]  Chandrasekar A, Riju A, Sithara K, Anoop S, Eapen SJ. Identification of single nucleotide polymorphism in ginger using expressed sequence tags. Bioinformation 2009; 4: 119-122.
 
[78]  Gemenet DC, Kitavi Mercy N, David M, Ndege D, SsaliI RT, Swanckaert J, Makunde G, Yencho GC, Gruneberg W, Carey Edward, Mwanga RO. Andrade MI, Heck S, Campos H. Development of diagnostic SNP markers for quality assurance and control in sweetpotato [Ipomoea batatas (L.) Lam.] breeding programs. Res. Artic. 2020: 18.
 
[79]  Soriano JM. Molecular Marker Technology for Crop Improvement. Agronomy 2020; 10: 1462.
 
[80]  Han M, Opoku KN, Bissah NAB, Su T. Solanum aethiopicum: The Nutrient-Rich Vegetable Crop with Great Economic, Genetic Biodiversity and Pharmaceutical Potential. Horticulturae 2021; 7: 17.
 
[81]  Shivakumar N. Biotechnology and Crop Improvement of Ginger (Zingiber officinale Rosc.). In: Wang H, editor. Ginger Cultivation and Its Antimicrobial and Pharmacological Potentials. IntechOpen, 2020: 13.
 
[82]  Zhang J, Yang J, Zhang L, Luo J, Zhao H, Zhang J, Wen C. A new SNP genotyping technology Target SNP-seq and its application in genetic analysis of cucumber varieties. Sci Rep 2020; 10: 5623.
 
[83]  Phougat D, Panwar IS, Punia MS, Sethi SK. Microsatellite markers based characterization in advance breeding lines and cultivars of bread wheat. J Environ Biol 2018; 39: 339-346.
 
[84]  Gnankambary K, Batieno TBJ, Sawadogo N, Sawadogo M, Tignegre JB, Yonli D, Ouedraogo TJ. Genetic Variability Induced by Gamma Radiation in Cowpea [(Vigna unguiculata L. (Walp)] in Burkina Faso. Eur Sci J ESJ 2019; 15.
 
[85]  Gunasekaran A, Pavadai P. Studies on Induced Physical and Chemical Mutagenesis in Groundnut (Arachis hypogia). Int Lett Nat Sci 2015; 35: 25-35.
 
[86]  Mensah JK, Obadoni B. Effects of sodium azide on yield parameters of groundnut (Arachis hypogaea L.). Afr J Biotechnol 2007; 6: 668-671.
 
[87]  Tshilenge-Lukanda L, Kalonji-Mbuyi A, C. Nkongolo KK, Kizungu RV. Effect of Gamma Irradiation on Morpho-Agronomic Characteristics of Groundnut (&lt;i&gt;Arachis hypogaea&lt;/i&gt; L.). Am J Plant Sci 2013; 04: 2186-2192.
 
[88]  Amri-Tiliouine W. Induction de la variabilité génétique par radio-mutagenèse (rayons gamma) chez le pois chiche (Cicer arietinum L.) et évaluation agronomique et génétique (Low-Cost TILLING) de mutants en M2. 2019.
 
[89]  Anil VS, Bennur S, Lobo S. Somaclonal variations for crop improvement: Selection for disease resistant variants in vitro. Plant Sci Today 2018; 5: 44-54.