Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Issue 1, Volume 12, 2024
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Issue 4, Volume 11, 2023
Issue 3, Volume 11, 2023
Issue 2, Volume 11, 2023
Issue 1, Volume 11, 2023
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Issue 4, Volume 10, 2022
Issue 3, Volume 10, 2022
Issue 2, Volume 10, 2022
Issue 1, Volume 10, 2022
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Issue 3, Volume 9, 2021
Issue 2, Volume 9, 2021
Issue 1, Volume 9, 2021
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Issue 4, Volume 8, 2020
Issue 3, Volume 8, 2020
Issue 2, Volume 8, 2020
Issue 1, Volume 8, 2020
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Issue 4, Volume 7, 2019
Issue 3, Volume 7, 2019
Issue 2, Volume 7, 2019
Issue 1, Volume 7, 2019
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Issue 4, Volume 6, 2018
Issue 3, Volume 6, 2018
Issue 2, Volume 6, 2018
Issue 1, Volume 6, 2018
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Issue 6, Volume 5, 2017
Issue 5, Volume 5, 2017
Issue 4, Volume 5, 2017
Issue 3, Volume 5, 2017
Issue 2, Volume 5, 2017
Issue 1, Volume 5, 2017
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Issue 6, Volume 4, 2016
Issue 5, Volume 4, 2016
Issue 4, Volume 4, 2016
Issue 3, Volume 4, 2016
Issue 2, Volume 4, 2016
Issue 1, Volume 4, 2016
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Issue 6, Volume 3, 2015
Issue 5, Volume 3, 2015
Issue 4, Volume 3, 2015
Issue 3, Volume 3, 2015
Issue 2, Volume 3, 2015
Issue 1, Volume 3, 2015
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Issue 6A, Volume 2, 2014
Issue 6, Volume 2, 2014
Issue 5, Volume 2, 2014
Issue 4, Volume 2, 2014
Issue 3, Volume 2, 2014
Issue 2, Volume 2, 2014
Issue 1, Volume 2, 2014
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
Issue 6, Volume 1, 2013
Issue 5, Volume 1, 2013
Issue 4, Volume 1, 2013
Issue 3, Volume 1, 2013
Issue 2, Volume 1, 2013
Issue 1, Volume 1, 2013

Volume 4, Issue 5

Yield and Yield Components of Chickpea (Cicer arietinum L.) as Influenced by Supplemental Irrigation under Semi-arid Region of Tunisia
Original Research
A field experiment was conducted at the research station of Higher Agriculture School of Kef located in a semi-arid region of to study the effect of supplemental irrigation on yield and yield components of four Tunisian chickpea genotypes (Béja 1, Bouchra, Neyer and Kasseb). Two supplemental irrigations were applied at the flowering and pod formation stages. Results showed a significant effect of supplemental irrigation on biological yield (BY/P), seed number per plant (SN/P), grain yield per plant (GY/P), 100-seed weight (100 SW), grain yield per m2 (GY/m2), harvest index (HI) and number of days to maturity (NDM). Grain yields under supplemental irrigation varied from 62.3 to 140.4 g/m2, and varied from 28.1 to 94.3 g/ m2 under the drought condition. The average 100-seeds weight reduction due to drought condition was 19.3 %. Results showed also that under rainfed condition, Bouchra and Nayer genotypes required minimum number of days to maturity (145.7 and 144.7 respectively). Drought susceptibility index (DSI) values for grain yield ranged from 0.67 to 1.39. Nayer was relatively drought resistant (DSI values <1). This genotypes proved high yielding and drought tolerant and can be incorporated in stress breeding programme for the development of drought tolerant chickpea varieties.
World Journal of Agricultural Research. 2016, 4(5), 153-157. DOI: 10.12691/wjar-4-5-5
Pub. Date: August 23, 2016
18740 Views5338 Downloads
Integrated Application of Mineral Nitrogen and Cattle Manure to Improve Nitrogen Use Efficiency and Grain Yield of Maize
Original Research
Field experiments were conducted at the Plantation Crops Section of Kwame Nkrumah University of Science and Technology in Kumasi, Ghana in 2014 major and minor seasons to study the effect of combining mineral nitrogen at different application times with cattle manure on nitrogen use efficiency and grain yield of maize. The experiments were factorial in randomized complete block design with four replications. The factors were cattle manure at the rates of 0, 2, 4 and 6 tons/ha; and nitrogen application times as follows: 50% N at 2 weeks after planting and 50% at 4 WAP (NT1), 50% N at 2 WAP and 50% at 6 WAP (NT2), 50% N at 2 WAP and 50% at 8 WAP (NT3) and a control (0 kg N/ha). Results showed that NT2 application increased the nitrogen use efficiency in major and minor seasons more than other application times. The nitrogen use efficiency increased with increase in manure rate, but at a diminishing return. Grain yield was also higher at NT2 and also increased with increase in manure rate. Application of mineral nitrogen at NT2 along with 6 tons/ha cattle manure rate was, therefore, considered best combination for increasing yield of maize in the country.
avodart buy uk avodart avodart buy uk
selegilin preis selegilin preis selegilin tabletta
World Journal of Agricultural Research. 2016, 4(5), 147-152. DOI: 10.12691/wjar-4-5-4
Pub. Date: August 17, 2016
9462 Views3136 Downloads1 Likes
Phytochemical Distribution and Bioactivity of Different Parts and Leaf Positions of Pimenta Dioica (L.) Merr (Myrtaceae)
Original Research
Pimenta dioica (L.) Merr. (Myrtaceae) is an evergreen aromatic spice widely used in perfumery, food and cosmetic industry in many parts of the world. Present study compared Total Antioxidant Capacity (TAC), Total Phenolic Content (TPC), Total Flavonoid Content (TFC), leaf area (LA), and Fresh to Dry weight ratio of Pimenta dioica leaves at different leaf positions (1st, 2nd, 3rd, 4th and 5th leaf positions) and different plant parts (immature leaf, mature leaf and bark). The TAC, TPC and TFC were determined using Ferric Reducing Antioxidant Power Assay (FRAP), modified Folin–Ciocalteu colorimetric method and calorimetric method respectively. Significantly higher TAC 562.38 ± 9.42 (mg TE/g DW), TPC 279.53±7.02 (mg GAE/g DW) were observed in leaf extract obtained from 1st leaf position. However the highest TFC 303.48 ±8.87 (mg RE/g DW) was observed in 5th leaf position. According to phytochemical distribution pattern, significantly higher TAC [619.84 ±11.98 (mg TE/g DW)], TPC [267.53 ± 5.03(mg GAE/g DW)], TFC [305.48 ±8.87 (mg RE/g DW)] were observed in extracts obtained from bud region. The potential of Pimenta dioica leaf material and bark as a fabulous raw material for food, perfumery and cosmetic industries. Further harvesting of immature leaves could be suggested for better therapeutic benefits.
reglan bez recepta tracyawheeler.com reglan upute
World Journal of Agricultural Research. 2016, 4(5), 143-146. DOI: 10.12691/wjar-4-5-3
Pub. Date: August 02, 2016
8622 Views3411 Downloads1 Likes
The Effect of Plastic Mulch on Growth and Yield of Rain-fed Cowpea and Watermelon in North Kordofan State of Sudan
Original Research
A research was carried to identify the effect of plastic mulch on growth and yield of water melon (citrullus lanatus) and cowpea ((Vigna unguiculata L.Walp).), two popular crops extensively grown in Western Sudan under rain-fed condition. The experiment was conducted during rainy seasons (2014/15-2016/16) at two locations in North Kordofan of Sudan, consisted of two treatments (covered or uncovered with thin plastic sheet) laid out in a Randomized Complete Block Design (RCBD) with four replications. Plastic sheet mulching significantly increased plant height, fruit weight, fruit number and seed yield of watermelon by 30%, 70%, 17%, and 65%, respectively. In cowpea plastic sheet mulching significantly increased number of pods per plant, grain yield and 100- seed weight by 17%, 30% and 10% respectively. It can be concluded that using plastic mulch as a soil cover increased the vegetative growth and yield of watermelon and cowpea crops under marginal sandy rain-fed conditions of North Kordofan State.
niacin niacin band niasinamid
side effects of naltrexone implant http://naltrexonealcoholismmedication.com/ naloxone alcohol treatment
World Journal of Agricultural Research. 2016, 4(5), 139-142. DOI: 10.12691/wjar-4-5-2
Pub. Date: July 26, 2016
15469 Views4331 Downloads2 Likes
Effect of Fermented Rice Bran and Cassava Waste on Growth Performance and Meat Quality of Crossbred Pigs
Original Research
Different levels of rice bran and cassava waste fermented with Trichoderma longibrachiatum, Aspergillus niger, Pichia kudriavzevii and Lactobacillus buchneri were used in diets for crossbred (Landrace x Yorkshire) pigs. Thirty-five pigs were randomly allocated to seven treatments: CO, control diet without fermented by-products; RBF1, RBF2 and RBF3 with 15, 20 and 25% fermented rice bran in the growing period and 30, 35 and 40% fermented rice bran in finishing period, respectively, and CWF1, CWF2 and CWF3 with 15, 20 and 25% fermented cassava waste in the growing period and 30, 35 and 40% fermented cassava waste in finishing period, respectively. The average daily feed intake (ADFI) was higher (p<0.01) on diets with RBF than with CWF in the growing and finishing periods and overall. There was no difference in average daily gain (ADG) between diets with fermented by-products in the growing period, while the ADG was higher (p<0.01) on diets with RBF than with CWF in the finishing period and overall. The feed conversion ratio was lower on diets with CWF than with RBF in the growing and finishing periods and overall (p<0.01). Inclusion of fermented by-products resulted in reduced ADFI (p<0.01) in the growing and finishing periods and overall, and lower ADG (p<0.01) in the finishing period and overall compared with the control diet. There were no differences (p>0.05) among treatments in carcass and meat quality traits. Inclusion of fermented rice bran and cassava waste reduced feed cost per kg ADG.
cialis marche pas avec moi cialis marche pas avec moi cialis marche pas avec moi
coupons for prescription drugs site drug coupons
cialis coupons free link cialis discount coupons online
cialis gel cialis forum hr cialis forum hr
side effects of naltrexone implant naltrexone alcoholism medication naloxone alcohol treatment
World Journal of Agricultural Research. 2016, 4(5), 132-138. DOI: 10.12691/wjar-4-5-1
Pub. Date: July 07, 2016
17920 Views5313 Downloads