Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
World Journal of Agricultural Research. 2017, 5(2), 94-101
DOI: 10.12691/WJAR-5-2-5
Original Research

Evaluation of Selected Cassava (Manihot esculenta Crantz) Cultivars Grown in Kenya for Resistance to Bacterial Blight Disease

Gladys Ada Mbaringong1, , Evans N. Nyaboga2, Virginia Wang’ondu1 and Esther Kanduma2

1School of Biological Sciences, University of Nairobi, P.O Box 30197 – 00100, Nairobi, Kenya

2Department of Biochemistry, University of Nairobi, PO Box 30197 – 00100, Nairobi, Kenya

Pub. Date: March 09, 2017

Cite this paper

Gladys Ada Mbaringong, Evans N. Nyaboga, Virginia Wang’ondu and Esther Kanduma. Evaluation of Selected Cassava (Manihot esculenta Crantz) Cultivars Grown in Kenya for Resistance to Bacterial Blight Disease. World Journal of Agricultural Research. 2017; 5(2):94-101. doi: 10.12691/WJAR-5-2-5

Abstract

Bacterial blight of cassava is one of the most important diseases of cassava worldwide due to its growing concern, widespread and destructive nature. Even though the use of resistant cultivars is the most effective management strategy for the disease, such cultivars are not well identified. Therefore, the objective of this study was to screen 21 cassava cultivars collected from major growing regions of Kenya, for reaction against bacterial blight caused by Xanthomonas axonopodis pv. manihotis (Xam). The cultivars were inoculated with Xam by leaf clipping and stem puncturing inoculation methods, for in vitro and potted plants, respectively. The cassava cultivars varied in their reaction to the pathogen, including incubation period, wilt incidence and area under the disease progress curve (AUDPC) values. Four groups of cultivars with differential reactions to Xam isolate were identified. Four cultivars (TME419, 30572, 98/0505 and Kibaha) were resistant, 4 cultivars (Albert, Ebwanatereka, Karibuni and 92/0326) moderately resistance, 11 cultivars (Serere, Muzege, TME7, 98/0581, Tajirika, Namikonga, Kibandameno, Mzalauka, AR40-6, Shibe and 01/1371) susceptible and the other 2 cultivars (Kiroba and Numbari) were highly susceptible. The resistant cultivars should be multiplied and made available as clean planting materials to cassava producing farmers and integrated as one of the options in disease management measures. These genotypes could also form vital germplasm of cassava bacterial blight disease resistance breeding programs. The cassava cultivars that showed a resistant reaction to the bacterial blight pathogen should be further evaluated against a large number of Xam isolates.

Keywords

cassava bacteria blight, Xanthomonas axonopodis pv. manihotis, cultivars, resistance

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  FAO (2013). FAOSTAT database collections. Food and Agriculture Organization of the United Nations. Rome. Access date: 2016-12-22. URL: http://faostat.fao.org.
 
[2]  Jansson, C., Westerbergh, A., Zhang, J. Xinwen Hu, S. C, “Cassava, a potential biofuel crop in (the) People’s Republic of China,” Applied Energy, 86:S95-S99, 2009.
 
[3]  Lukuyu, B., Okike, I., Duncan, A., Beveridge, M., Blummel, M, “Use of cassava in livestock and aquaculture feeding programs,” ILRI Discussion Paper 25. Nairobi, Kenya: International Livestock Research Institute.
 
[4]  Latif, S., Muller, J, “Potential of cassava leaves in human nutrition: a review,” Trends in Food Science and Technology, 44: 147-158, 2015.
 
[5]  Schlenker, W., Lobell, D.B, “Robust negative impacts of climate change on African agriculture,” Environmental Research Letters 5:014010, 2010.
 
[6]  Jarvis, A., Ramirez-Villegas, J., Herrera Campo, B.V, Navarro-Racines, C, “Is cassava the answer to African climate change adaptation?,” Tropical Plant Biology 5: 9-29, 2012.
 
[7]  Roudier, P., Sultan, B., Quirion, P., Berg, A, “The impact of future climate change on West African crop yields: what does the recent literature say,” Global Environmental Change-Human and Policy Dimensions, 21: 1073-1083, 2011.
 
[8]  Rosenthal, D.M., Slattery, R.A., Miller, R.E., Grennan, A.K., Cavagnaro, T.R., Fauquet, C.M., Gleadow, R.M., Ort, D.R, “Cassava about-FACE: greater than expected yield stimulation of cassava (Manihot esculenta) by future CO2 levels,” Global Change Biology, 18: 2661-2675, 2012.
 
[9]  Herrera-Campo V, Hyman G, Bellotti A (2011), “Threats to cassava production known and potential geographic distribution of four key biotic constraints,” Food Security 3: 329-345.
 
[10]  Hillocks, R.J., Wydra, K, “Bacterial, fungal and nematode diseases,” Cassava: Biology, Production and Utilization, 261-280, 2002.
 
[11]  Banito, A., Kpemoua, K. E., Wydra, K, “Expression of resistance and tolerance of cassava genotypes to bacterial blight determined by genotype x environment interactions,” Journal of Plant Diseases and Protection, 115(4):152-161, 2008.
 
[12]  Wydra, K., Banito, A., Kpémoua, K.E, “Characterization of resistance of cassava genotypes to bacterial blight by evaluation of leaf and systemic symptoms in relation to yield in different ecozones,” Euphytica, 155(3):337-348, 2007.
 
[13]  Moses, E., Asafu-Agyei., J.N., Adubofuor, K., Augustine, A, “Guide to identification and control of cassava diseases,” Ashmetro prints, Kumasi, Ghana, http://www.isppweb.org/fstf/Cassava%20Diseases%20Guide.pdf.
 
[14]  Verdier, V., Ojeda, S., Mosquera, G, “Methods for detecting the cassava bacterial blight pathogen: a practical approach for managing the disease,” Euphytica, 120(1): 103-107, 2001.
 
[15]  Xin, L., Chaoping, L., Tao, S., Guixiu, H, “Bactericide Screening against Xanthomonas axonopodis pv. manihotis,” Plant Diseases and Pests, 5(1): 1-3, 2014.
 
[16]  Ogunjobi A.A., Fagade, O.E., Dixon, A.G.O., Bandyopadhyay, R, “Assessment of large population of cassava accessions for resistant to cassava bacterial blight infection in the screen house environment,” Journal of Agricultural Biotechnology and Sustainable Development, 2(6): 87-91, 2010.
 
[17]  Ndung’u, J.N., Wachira, F.N., Kinyua, M.G., Lelgut, D.K., Njau P., Okwaro, H.,. Obiero, H, “Genetic diversity study of Kenyan cassava germplasm using simple sequence repeats,” African Journal of Biotechnology, 13(8): 926-935, 2014.
 
[18]  Chege. MN, “Phenotypic and genotypic diversity of Xanthomonas axonopodis pv. manihotis causing bacterial blight disease of cassava in Kenya,” MSc Thesis, Jomo Kenyatta University of Agriculture and Technology, 2017.
 
[19]  Jorge, V., Fregene, M.A., Duque, M.C., Bonierbale, M.W., Tohme, J., Verdier, V, “Genetic mapping of resistance to bacterial blight disease in cassava (Manihot esculenta Crantz),” Theoretical and Applied Genetics, 101(5-6): 865-872, 2000.
 
[20]  Muñoz Bodnar, A., Gómez, C., Mariel, L., Bernal, A., Szurek, B., López Carrascal, C.E, “Comparing Inoculation Methods to Evaluate the Growth of Xanthomonas axonopodis pv. manihotis on Cassava Plants,” Acta Biológica Colombiana, 20(2): 47-55, 2015.
 
[21]  Jorge, V., Verdier, V, “Qualitative and quantitative evaluation of cassava bacterial blight resistance in F1 progeny of a cross between elite cassava clones,” Euphytica, 123(1): 41-48, 2002.
 
[22]  Wydra, K., Zinsou, V., Jorge, V., Verdier, V, “Identification of pathotypes of Xanthomonas axonopodis pv. manihotis in Africa and detection of quantitative trait loci and markers for resistance to bacterial blight of cassava,” Phytopathology, 94(10): 1084-1093, 2004.
 
[23]  Kim, J., Taylor, K., Hotson, A., Keegan, M., Schmelz, E.A., Mudgett, M, “XopD SUMO Protease Affects Host Transcription, Promotes Pathogen Growth, and Delays Symptom Development in Xanthomonas-Infected Tomato Leaves,” Plant Cell, 20(7): 1915-1929, 2008.
 
[24]  Zinsou, A.V, “Studies on host plant resistance to cassava bacterial blight in combination with cultural control measures in ecozones of West Africa,” Doctoral thesis. University of Hannover. Germany, 2003.
 
[25]  Akhtar, M. A., Rafi, A., Hameed, A, “Comparison of methods of inoculation of Xanthomonas oryzae pv. oryzae in rice cultivars,” Pakistan Journal of Botany, 40(5): 2171-2175, 2008.
 
[26]  Ruz, E.L., Moragrega, G.C., Montesinos, S.E, “Evaluation of four whole-plant inoculation methods to analyze the pathogenicity of Erwinia amylovora under quarantine conditions,” International Microbiology, 11(2): 111-119, 2008.
 
[27]  Banito, A., Kpémoua, K. E., Wydra, K, “Screening of cassava genotypes for resistance to bacterial blight using strain × genotype interactions,” Journal of Plant Pathology, 92(1): 181-186, 2010.
 
[28]  Zinsou, V., Wydra, K., Ahohuendo, B., Schreiber, L, “Leaf waxes of cassava (Manihot esculenta Crantz) in relation to ecozone and resistance to Xanthomonas blight,” Euphytica, 149(1-2): 189-198, 2006.
 
[29]  Atkinson, M.M., Huang, J.S., Knopp, J.A, “The Hypersensitive Reaction of Tobacco to Pseudomonas syringae pv. pisi,” Plant Physiology, 79(3): 843-847, 1985.
 
[30]  Chen, C.H., Lin, H.J., Ger, M.J., Chow, D., Feng, T.Y, “The cloning and characterization of a hypersensitive response assisting protein that may be associated with the harpin-mediated hypersensitive response,” Plant Molecular Biology, 43: 429-438, 2000.
 
[31]  Jeger, M.J., Viljanen-Rollinson, S.L.H, “The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars,” Theoretical and Applied Genetics, 102: 32-40, 2001.
 
[32]  Lozano, J.С., Labcrry, R, “Screening for resistance to cassava bacterial blight,” Growth, 1(2):3, 1982.
 
[33]  Dixon, A.G.O., Ngeve, J.M., Nukenine, E.N, “Genotype X environment effects on severity of cassava bacterial blight disease caused by Xanthomonas axonopodis pv. manihotis,” European Journal of Plant Pathology, 108: 763-770, 2002.
 
[34]  Ceballos, H., Iglesias, C.A., Perez, J.C., Dixon, A.G.O, “Cassava breeding: opportunities and challenges,” Plant Molecular Biology, 56: 503-516, 2004.