Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
World Journal of Agricultural Research. 2014, 2(1), 12-21
DOI: 10.12691/WJAR-2-1-3
Original Research

Morphological Features, Yield Components and Genetic Relatedness of Some Wheat Genotypes Grown in Palestine

Rezq Basheer-Salimia1, and Sayel Atawnah2

1Department of Plant Production and Protection, Faculty of Agriculture, Hebron University, Palestine

2Union of Agricultural Work Committees (UWAC), Palestine

Pub. Date: February 08, 2014

Cite this paper

Rezq Basheer-Salimia and Sayel Atawnah. Morphological Features, Yield Components and Genetic Relatedness of Some Wheat Genotypes Grown in Palestine. World Journal of Agricultural Research. 2014; 2(1):12-21. doi: 10.12691/WJAR-2-1-3

Abstract

The objectives of the present study were to study the morphological characteristics, yield components, chemical compositions and genetic relatedness of six wheat Triticum spp genotypes frequently grown under rain-fed conditions at the southern highland of West-Bank, Palestine. Three local genotypes commonly known as Black-Depia, White-Depia, and White-Hetia, and three introduced ones namely Ambar, Sham-3, and Sham-5, were allocated at three different agro-ecological conditions namely Al-Arroub, Dora, and Janata using completely randomized block design, with five replications (net plot size of 25 m 2 areas per replicate). The results showed significant variations among the six wheat genotypes almost for all measured parameters (maturation and harvesting date, stem length, tillering, number of grains per spike, average spike weight, spike length, spike length with awns, weight of 100 seeds per genotypes, and total yields). Generally, local wheat genotypes presented better yield than the introduced ones. Black-Depia genotype showed the highest yield (grain plus hay) among the three examined sites therefore, it could be a promising cultivar for any further breeding program especially for drought tolerance; however, the lowest yields were obtained in Sham-5 and Sham-3 at Janata site, respectively. Regarding wheat quality parameters, no significant variations were observed for any conducted analyses, however, there were trends for higher protein contents in Sham-5 and White-Hetia genotypes. UPGMA dendrogram clustered the examined six wheat genotypes into two main clusters related to Black-Depia as an isolated genotype. The first cluster is composed of “Sham-5, White-Hetia and Sham-3 genotypes; and the second cluster consisted of White-Depia and Amber genotypes.

Keywords

wheat, genotypes, growth, yield, genetic relatedness

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Breiman, A., and Graur, D. (1995). Wheat Evolution. Israel J. Pl. Sci. 43: 85-98.
 
[2]  Harlan, J. R., and Zohary, D. (1966). Distribution of wild wheats and barley. Science. 153: 1074-1080.
 
[3]  Nevo, E. (1992). Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent. Pp. 19-43 in P. R. Shewry, ed. Barley: genetics, biochemistry, molecular biology and biotechnology. C.A.B. International, the Alden Press, Oxford.
 
[4]  Palestinian Central Bureau of Statistics “PCBS” (2010) . Agricultural Statistics. Ramallah, Palestine.
 
[5]  Musaddique M, Hussain A, Wajid S, and Ahmad A. 2000. Growth, yield and components of different genotypes of wheat. International Journal of Agriculture and Biology. Vol. 3: 242-244.
 
[6]  Barakat, M., Al-Doss, A., Moustafa, K., Elshafei, E. A. (2010). Morphological and molecular characterization of Saudi wheat genotypes under drought stress. Journal of Food, Agriculture & Environment. 8 (1): 220-228.
 
[7]  Saddoud, O., Chatti, K., Salhi-Hannachi, A., Mars, M., Rhouma, A., Marrakchi, M., and Trifi, M. (2007). Genetic diversity of Tunisian figs Ficus carica L. as revealed by nuclear microsatellites. Hereditas 144, 149-157.
 
[8]  Basheer-salimia, R., Awad M., Alseekh. S., Harb. J., hamdan Y. (2012). Molecular polymorphisms in Palestinian Figs (Ficus carica L.) as revealed by Random Amplified Polymorphic DNA (RAPD). J. of Gen. Engi. and Biot. 10 (2):169-175.
 
[9]  Cantini, C., Cimato, A., and Sani, G. (1999). Morphological evaluation of olive germplasm present in Tuscany region. Euphytica, 109: 173-181.
 
[10]  AOAC, (1990). Official methods of analysis (14th edition). Washington, DC: The Association of Official analytical chemists.
 
[11]  Ryan, J., George, E., and Abdul, R. (2001). Soil and Plant Analysis Laboratory Manual. Second edition. International Center for Agricultural Research in the Dry Areas (ICARDA).
 
[12]  Peter, L. P., and Young, V. R. (1980). Nutritional Evaluation of Protein Foods. The United Nations University, Japan. 8.
 
[13]  Rashid, A. (1986). Mapping Zine fertility of soil using indicator plants and soils analysis. PhD Dissertation, University of Hawaii, HI, USA.
 
[14]  Corona, M. E., Vazquea de Aldana, R. B., Criado, B. G., and Ciudad, A. G. (1998). Variations in nutritional quality and biomass production of semiarid grasslands. J. of Rang. Manag. 51 (5): 570-576.
 
[15]  Barnes, T.G., Varner, L. W., Blankenship, H. L., Fillinger, J.T., and Heineman, S. C. (1990). Macro and trace mineral content of selected south Texas, J. of Rang. Manag. 43 (3): 220-223.
 
[16]  EL-Shatnawi, M. J., and Ereifej, K. I. (2001). Chemical composition and livestock ingestion of carob (Ceratonia siliqua L.) seeds. J. of Rang. Manag. 54: 669-673.
 
[17]  Chapman, H. D., and Pratt, P. F. (1961). Methods of Analysis for soils, plants and water. Univ. California, Berkeley, CA, USA.
 
[18]  Schlüter, P. M., and Harris, S. A. (2006). “Analysis of multilocus fingerprinting data sets containing missing data”. Molecular Ecology Notes. (6). 569-572.
 
[19]  Royo, C., Abaza, M., Blanco, R., and García del Moral. L. F. (2000). Triticale grain growth and morphology as affected by drought stress, late sowing and simulated drought stress. Aust. J. Plant Physiol. 27: 1051-1059.
 
[20]  Khan, A., Azam, J. F., Ali, A. (2010). Relationship of morphological traits and grain yield in recombination inbred wheat lines grown under drought condition. Pak. J. Bot., 24 (1): 259-267.
 
[21]  Mehmet, A., and Telat, Y. (2006). Path coefficient analysis of yield and yield components in breed wheat genotypes. Pak. J. Bot., 38 (2): 417-424.
 
[22]  Shafi, M., Khan, S., and Nazir, M. (1992). Yield and yield components of wheat in relation to different phosphorus and radiation levels. Sarhad j. Agril. 8: 1-5.
 
[23]  Afzal, M., and Nazir, M. S. (1986). Response of two semi dwarf wheat varieties to sowing dates. J. Agric. Res., 24 (2): 110-114.
 
[24]  Khan, M. Q., Alam, K. and Chowdhry, M. A. (1992). Diallel cross analysis of some morphological traits in spring wheat. Pak. J. Agric. Res., 13 (3): 211-215.
 
[25]  Muhammad, A. C., Rabbani, G., Subhani, G. M., and Khaliq, I. (1999). Combining ability studies for some polygenic traits in Triticum aestivum. Pak. J. Bio. Sci., 2 (2): 434-437.
 
[26]  Thomas, H. (1997). Drought Tolerance in Plant. In: A. S. Bara and R.K. Bara (Eds.) Mechanisms of Environmental Stress Tolerance in Plant. Academic Puplisher. 1-42.
 
[27]  Yadavi, A., Modaress Sanavi, A., and Zarghami, R. (2000). The Effects of Drought Stress on Oats Species in Germination Step. Articles Summary in 6th Session of Agriculture and Plants Improvement Congress Iran, Mazandaran University. 235-236.
 
[28]  Sharpe, R. E. (2002). Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plan Cell and Environment, 25: 211-222.
 
[29]  García del Moral, L. F., Ramos, J. M., García del Moral, M. B., and Jimenez-Tejada, P. (1991). Ontogenetic approach to grain production in spring barley based on path-coefficient analysis. Crop Sci. 31: 1179-1185.
 
[30]  Simane, B., Struik, P. C., Nachit, M. M., Peacock, J. M. (1993). Ontogenetic analysis of yields and yields components and yield stability of durum wheat in water-limited environments. Euphytica, 71: 211-219.
 
[31]  Giunta, F., Motzo, R., Deidda, M. (1993). Effect of drought on yield and yield components of durum wheat and triticale in a Mediterranean environment. Field Crops Res., 33 (4): 399-409.
 
[32]  Protić, R., Marković, M., Protić, N. (2007). Effects of different ways of seed protection on some yield components and grain yield winter wheat. Romanian Biotechnological Letters, 12, 5: 3435-3434.
 
[33]  Ali, A., and Wright, D. (1999). Effect of environmental stresses on grain growth and yield of contrasting wheat varieties Pak. J. Agric., 1 (2): 113-114.
 
[34]  Kashif, M., and Khaliq, I. (2004). Heritability, correlation and path coefficient analysis for some metric traits in wheat. Int. J. Agric. Bio., 6: 138-142.
 
[35]  Busso, N., Peclat, V., Van Ness, K., Kolodziesczyk, E., Degen, J., Bugge, T., and So, A. (1998). Exacerbation of antigen-induced arthritis in urokinase-deficient mice. J. Clin. Invest 102: 41-50.
 
[36]  Hussain, T., Nazeer, W., Tauseef, M., Farooq, J., Naeem, M., Freed, S., Iqbal, M., Hameed, A., Sadiq, M. A., Nasrullah, H. M. (2012). Inheritance of some spike related polygenic traits in spring wheat (Triticum aestivum L.). Afri. J. of Agril. Rese. 7 (9): 1381-1387.
 
[37]  Chowdhary, M. A., Salem, M. Y., Alam, K., and Khaliq, I. (1993). Mode of gene action for some agronomically important characters in spring wheat. Pak. J. Agric. Res., 30 (2): 177-180.
 
[38]  Adnan, M., Bhutta, M. A. (1994). Genetic study of some quantitative characters in wheat (Triticum aestivum L.). J. Agric. Res., 28: 1-8.
 
[39]  Tahir, M. S., Alam, K., Chaudhry, M. A, Ahmad, J. (1995). Genetic analysis of some important traits in bread wheat (Triticum aestivum L.) crosses. Pak. J. Agric. Sci., 32: 172-177.
 
[40]  Shahzad, K., Mohy-ud-Din, Z., Chowdhary, M.A., and Hussain, D. (1998). Genetic analysis for some yield traits in Triticum aestivum. Pak. J. Bio. Sci., 1 (3): 237-240.
 
[41]  Inamullah, Ahmad, H., Mohammad, F., Siaj-Ud-Din, Hassan, G., and Gul, R. (2006). Diallel analysis of the inheritance pattern of agronomic traits bread wheat. Pak. J. Bot .38: 1169-1175.
 
[42]  Agoston, T., (2009). Effect of the crop year on the agronomical traits of wheat varieties. PhD thesis, University of Debrecen.
 
[43]  Qari, M. S., Khan, N. I., and Bajwa, M. A. (1990). Comparison of wheat cultivars for stability in yield performance. Pak. J. Agri. Res., 11, 73-77.
 
[44]  Anonymous, (1996). Items from Hungary (Agric. Res. Inst., Martonvasar). Ann. Wheat News lett. 1996. 42, 93-97.
 
[45]  Ulker, M., Sonmez, F., Ciftci, V., Yilmaz, N., and Apak, R. (2006). Adaptation and stability analysis in the selected lines of tir wheat. Pak. J. Bot., 38: 1177-1183.
 
[46]  Gooding, M. J. (2009). The Wheat Crop. In Wheat Chemistry and Technology (4th Edition), ed. Khan K & Shewry PR, 25-38. AACC International, Inc., St Paul, MN.
 
[47]  Blum, A., and Pnuel, Y., (1990). Physiological attributes associated with drought resistance of wheat cultivation in a Mediterranean environment. Aust. J. Agril. Res. 41: 799-810.
 
[48]  Seghatoleslami, M. J., Kafi, M., Majidi, E. (2008) Effect of drought stress at different growth stages on yield and water use efficiency of five proso millet (Panicum miliaceum L.) genotypes. Pak J Bot 40: 1427-1432.
 
[49]  Edwards, M. (2010) Morphological features of wheat grain and genotype affecting flour yield, PhD thesis, Southern Cross University, Lismore, NSW.
 
[50]  Jaleel, C.A., Manivannan, P., Kishorekumar, A., Sankar, B., Gopi, R., Somasundaram, R., and Panneerselvam, R. (2007a). Alterations in osmoregulation, antioxidant enzymes and indole alkaloid levels in Catharanthus roseus exposed to water deficit. Colloids Surf. B: Biointerfaces, 59: 150-157.
 
[51]  Jaleel, C.A., Manivannan, P., Kishorekumar, A., Sankar, B., Gopi, R., Somasundaram, R., and Panneerselvam, R. (2007b). Water deficit stress mitigation by calcium chloride in Catharanthus roseus; effects on oxidative stress, proline metabolism and indole alkaloid accumulation. Colloids Surf. B: Biointerfaces, 60: 110-116.
 
[52]  Jaleel, C.A., Manivannan, P., Kishorekumar, A., Sankar, B., Gopi, R., Somasundaram, R., and Panneerselvam, R. (2007c). Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloids Surf. B: Biointerfaces, 60: 201-206.
 
[53]  Jaleel, C.A., Manivannan, P., Kishorekumar, A., Sankar, B., Gopi, R., Somasundaram, R., and Panneerselvam, R. (2007d). Paclobutrazol enhances photosynthesis and ajmalicine production in Catharanthus roseus. Process Biochem, 42: 1566-1570.
 
[54]  Hussain, N., Hyder, N., and Ahmad, N. (2004). Influence of phosphorus application on growth and yield components of wheat cultivar Punjab-96. Indus J. Plant Sci., 3: 276-9.
 
[55]  D’Egidio, M. G., Mariani, B. M., Nardi, S., Novaro, P., Cubadda, R. (1990). Chemical and technological variables and their relationship: a predictive value equation for pasta cooking quality. Cereal Chem. 67: 275-281.
 
[56]  Nachit, M.M., Baum, M., Impilia, A., and Ketata, H. (1995a). Studies on some grain quality traits in durum wheat grown in Mediterranean environments. In: Procceedings of the Seminar on Durum Wheat Quality in the Mediterranean Region, Di Fonzo, N., Kaan, F. and Nachit, M.M. (eds), Zaragoza (Spain), 17-19 November. Options Mediterraneenes, Mediterranean Seminars, No. 22, pp. 181-188.
 
[57]  Kuspira, J., and Unran, J. (1957). Genetic analysis of certain characters in common wheat using whole chromosome substitution lines. Can. J. Pl. Sci, 37: 300-326.
 
[58]  Diehl, A. L., Johnson, V. A., Matternm, P. J. (1978). Inheritance of protein and lysine in three wheat crosses. Crop sci. 17: 391-395.
 
[59]  Halloran, G. M. (1975). Genetic analysis of grain protein percentage in wheat. TAG, 46: 79-86.
 
[60]  Konzak, C. F. (1977). Genetic control of the content, aminoacid composition and processing properties of proteins in wheat. Adv. Gen, 19: 407-582.
 
[61]  Halloran, G. M. (1981). Grain yield and protein relationships in wheat cross. Crop Sci, 21: 699-701.
 
[62]  Troccoli, A., Borrelli, G. M., De Vita, P., Fares, C., Di Fonzo, N. (2000). Durum wheat quality: a multidisciplinary concept. J. of Cereal Sci, 32: 99-113.
 
[63]  Cubadda, R., Fabriani, G., Tranquilli, G. B. (1969). Variabilita del contenuto in ceneri di frumento duro in rapport alla varieta, alla localita e alla precocita. Tecnica Molitoria. 20: 253.
 
[64]  Peterson, C. J., Johnson V. A., Mattern, P. J. (1986). Influence of cultivar and environment on mineral and protein concentrations of wheat flour, bran, and grain. Cereal Chem, 63: 183-186.
 
[65]  Fares, C., Troccoli, A., Di Fonzo, N. (1996). Use of friction debranning to evaluate ash distribution in Italian durum wheat cultivars. Cereal Chem, 73: 232-234.
 
[66]  Basheer-Salimia, R. Awad, M. Hamdan, Y., & Shtaya, M. (2013). Genetic Variability of some Palestinian Fig (Ficus Carica L.) Genotypes Based on Pomological and Morphological Descriptors An-Najah Univ. J. Res. (N. Sc.). Volume 27, pp 83-110.