Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
World Journal of Agricultural Research. 2023, 11(4), 98-106
DOI: 10.12691/WJAR-11-4-2
Original Research

Flowering Stage Soil Bacterial Diversity as Affected by Long-term Tillage and Crop Residue Retention

Eunice Essel1, 2, , Lingling Li1 and Jicheng Shen1

1College of Agronomy, Gansu Agricultural University, No.1 Yingmencun, Anning District, Lanzhou 730070, P.R. China

2School of Agriculture, C. K. Tedam University of Technology and Applied Sciences, P. O. Box 24, Navrongo, UE/R, Ghana

Pub. Date: December 24, 2023

Cite this paper

Eunice Essel, Lingling Li and Jicheng Shen. Flowering Stage Soil Bacterial Diversity as Affected by Long-term Tillage and Crop Residue Retention. World Journal of Agricultural Research. 2023; 11(4):98-106. doi: 10.12691/WJAR-11-4-2

Abstract

Tillage practises can affect the soil microbes and edaphic properties. The research was aimed to assess the influence of tillage and stubble retention on the soil bacterial diversity and soil properties at the flowering stage of the field pea (Pisum arvense L.) in a rotation system with spring wheat (Triticum aestivum L.). The experiment had four treatments; no-tillage with stubble removed (NT), no-tillage with stubble retained (NTS), conventional tillage with stubble removed (T), and conventional tillage with stubble incorporated (TS). Microbial genes in top bulk soil and rhizosphere soils were sequenced using bacterial 16S rRNA (V3V4) genes. Soil from NT and NTS recorded high number of bacterial 16S rRNA operational taxonomic units (OTUs) and the bacterial community in the 0-10 cm top soil varied significantly. Bacterial diversity indices in the bulk soil were greater compared to the rhizosphere. The predominant bacterial groups were Actinobacteria, Proteobacteria, and Acidobacteria. Bacterial classes correlated with soil temperature, nitrogen, and organic carbon, Olsen phosphorus and microbial biomass carbon in bulk and rhizosphere soil. The results showed the benefits of long-term tillage and crop residue and their influence on soil properties and microbial diversity in semi-arid environments.

Keywords

bacterial diversity, 16S rRNA, tillage, crop residue, soil properties

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Mehra, P., Baker J., Sojka, R.E., Bolan, N., Desbiolles, J., Kirkham, M.B., Ross, C. and Gupta, R. “A Review of Tillage Practices and Their Potential to Impact the Soil Carbon Dynamics”. Advances in Agronomy, 150, 185-230, 2018.
 
[2]  Dorr de Quadros, P., Zhalnina, K., Davis-Richardson, A., Fagen, J.R., Drew, J., Bayer, C., Camargo, F.A.O. and Triplett, E.W. “The effect of tillage system and crop rotation on soil microbial diversity and composition in a subtropical Acrisol”. Diversity, 4, 375-395, 2012.
 
[3]  Feng, Y., Motta, A.C., Reeves, D.W., Burmester, C.H., van Santen, E. and Osborne, J.A. “Soil microbial communities under conventional-till and no-till continuous cotton systems”. Soil Biology and Biochemistry, 35, 1693-1703, 2003.
 
[4]  Dong, W., Liu, E., Yan, C., Zhang, H. and Zhang, Y. “Changes in the composition and diversity of topsoil bacterial, archaeal and fungal communities after 22 years conventional and no-tillage managements in Northern China”. Archives of Agronomy and Soil Science, 63, 1369-1381, 2017.
 
[5]  Liu, C., Li, L., Xie, J., Coulter, J.A., Zhang, R., Luo, Z., Cai, L., Wang, L., Gopalakrishnan, S. “Soil bacterial diversity and potential functions are regulated by long-term conservation tillage and straw mulching”. Microorganisms, 8, 836, 2020.
 
[6]  Essel, E., Li, L., Deng, C., Xie, J., Zhang, R., Luo, Z. and Cai, L. “Evaluation Of Bacterial And Fungal Diversity In A Long-Term Spring Wheat – Field Pea Rotation Field Under Different Tillage Practices”. Canadian Journal of Soil Science, 98, 619-637, 2018.
 
[7]  Ng, J.P., Hollister, E.B., González-Chávez, C.A.M., Hons, F.M., Zuberer, D.A,, Aitkenhead-Peterson, J.A., Loeppert, R. and Gentry, T.J. “Impacts of Cropping Systems and Long-Term Tillage on Soil Microbial Population Levels and Community Composition in Dryland Agricultural Setting”. ISRN Ecology, 2012, 487370, 2012.
 
[8]  Lehtinen, T., Schlatter, N., Baumgarten, A., Bechini, L., Krüger, J., Grignani, C., Zavattaro, L., Costamagna, C. and Spiegel, H. “Effect of crop residue incorporation on soil organic carbon and greenhouse gas emissions in European agricultural soils”. Soil Use and Management, 30, 524-538, 2014.
 
[9]  Malhi, S., Nyborg, M., Goddard, T. and Puurveen, D. “Long-term tillage, straw and N rate effects on quantity and quality of organic C and N in a Gray Luvisol soil'”. Nutrient Cycling in Agroecosystems, 90, 21–22, 2011.
 
[10]  Andruschkewitsch, R., Geisseler, D., Koch, H.J. and Ludwig, B. “Effects of tillage on contents of organic carbon, nitrogen, water-stable aggregates and light fraction for four different long-term trials”, Geoderma. 192, 368–377, 2013.
 
[11]  Nimmo, J., Lynch, D.H. and Owen, J. “Quantification of nitrogen inputs from biological nitrogen fixation to whole farm nitrogen budgets of two dairy farms in Atlantic Canada”. Nutrient Cycling in Agroecosystems, 96, 93-105, 2013.
 
[12]  Phil, M., Cook, R. and Mizen, T. Biodiversity in Soils. IGER Innovations, 2001.
 
[13]  Kaschuk, G., Alberton, O. and Hungria, M. “Three decades of soil microbial biomass studies in Brazilian ecosystems: lessons learned about soil quality and indications for improving sustainability”. Soil Biology and Biochemistry, 42, 1–13, 2010.
 
[14]  Samad, M.S., Biswas, A., Bakken, L.R., Clough, T.J., de Klein, C.A.M., Richards, K.G., Lanigan, G.J. and Morales, S.E. “Phylogenetic and functional potential links pH and N2O emissions in pasture soils”. Scientific Reports, 6, 1–9, 2016.
 
[15]  Wang, X., Jiao, F., Li, X., and An, S. The Loess Plateau. In: Zhang, L., and Schwärzel, K., Eds, “Multifunctional land-use systems for managing the nexus of environmental resources”. Springer International Publishing, Switzerland, 2017, 11–27.
 
[16]  He, L., Cleverly, J., Chen, C., Yang, X., Li, J., Liu, W., and Yu, Q. “Diverse responses of winter wheat yield and water use to climate change and variability on the semiarid Loess Plateau in China”. Agronomy Journal, 106, 1169–1178, 2014.
 
[17]  Huang, G.B., Luo, Z.Z., Li, L.L., Zhang, R.Z., Li, G.D., Cai, L.Q. and Xie, J.H. “Effects of stubble management on soil fertility and crop yield of rainfed area in Western Loess Plateau, China”. Applied and Environmental Soil Science, 2012, 256312, 2012.
 
[18]  Lu, X., Lu, X., Wen, X. and Liao, Y. “Tillage and straw affect soil CO2 emissions in a rain-fed corn field”. Journal of Chemical and Pharmaceutical Research. 7, 2353-2360, 2015.
 
[19]  Yeboah, S., Zhang, R., Cai, L., Li, L., Xie, J., Luo, Z., Liu, J. and Wu, J. “Tillage effect on soil organic carbon, microbial biomass carbon and crop yield in spring wheat-field pea rotation”. Plant, Soil and Environment, 62, 279–285, 2016.
 
[20]  Chinese Soil Taxonomy Cooperative Research Group Chinese Soil Taxonomy (Revised Proposal). Institute of Soil Science/Chinese Agricultural Science and Technology Press, Academic Sinica, Beijing, 1995.
 
[21]  McLean, E.O. Soil pH and lime requirement. In: Page, A.L., Miller, R.H., Keeney, D.R. Eds, “Methods of Soil Analysis: Part 2–Chemical and microbiological properties”. Agronomy Monograph 9. American Society of Agronomy and Soil Science Society of America, Wisconsin, 1982, 199-224.
 
[22]  Nelson, D.W. and Sommers, L.W. Total carbon, organic carbon and organic matter. In: Page. A.L., Miller, R.H., Keeney, D.R. Eds,Methods of Soil Analysis. Part 2, Chemical and Microbiological Properties”. American Society of Agronomy and Soil Science, Wisconsin, 1982, 301-312.
 
[23]  Bremner, J.M. Nitrogen total. In: Methods of soil analysis. Part 3. Chemical Methods. Soil Science Society of America, Madison, Wisconsin, 1996, 1085.
 
[24]  Ladd, J.N. and Amato, M. “Relationship between microbial biomass carbon in soils and absorbance of extracts of fumigated soils’. Soil Biology Biochemistry, 21, 57-459, 1989.
 
[25]  Olsen, S.R., Cole, C.V., Watanabe, F.S. and Dean, L.A. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939, 1954.
 
[26]  Bremner, J.M. Chemical and Microbiological Properties. In: Black, C.A. Ed, “Methods of soil analysis”. American Society of Agronomy, Wisconsin, 1965, 1149-1178.
 
[27]  Masella, A.P., Bartram, A.K., Truszkowski, J.M., Daniel, G. and Neufeld, J.D.B. “PANDAseq: paired-end assembler for illumina sequences”. BMC Bioinformtics, 13, 31, 2012.
 
[28]  Edgar, R.C. “Search and clustering orders of magnitude faster than BLAST”. Bioinformatics, 26, 2460-2461, 2010.
 
[29]  Edgar RC. “UPARSE: highly accurate OTU sequences from microbial amplicon reads”. Nature Methods 10, 996-998, 2013.
 
[30]  Hammer, Ø., Harper, D.A.T. and Ryan, P.D. “PAST: Paleontological Statistics Software Package for Education and Data Analysis”. Palaeontologia Electronica, 4, 1-9, 2001.
 
[31]  Xiang, X., Shi, Y., Yang, J., Kong, J., Lin, X., Zhang, H., Zeng, J. and Chu, H. “Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest” Scientific Reports, 4, 3829, 2014.
 
[32]  Sharma-Poudyal, D., Schlatter, D, Yin, C, Hulbert S and Paulitz T. “Long-term no-till: A major driver of fungal communities in dryland wheat cropping system”. PLoS ONE, 12, e0184611, 2017.
 
[33]  Sipilä, T.P., Yrjälä, K., Alakukku, L. and Palojärvi, A. “Cross-Site Soil Microbial Communities under Tillage Regimes: Fungistasis and Microbial Biomarkers”. Applied and Environmental Microbiology, 78, 8191-8201, 2012.
 
[34]  Lavelle, P. and Spain, A.V. Soil Ecology. Springer, New Delhi, 2005.
 
[35]  Degrune, F., Theodorakopoulos, N., Colinet, G., Hiel, M.P., Bodson, B., Taminiau, B., Daube, G., Vandenbol, M. and Hartmann, M. “Temporal dynamics of Soil Microbial Communities below the seed bed under Two Contrasting Tillage Regimes”. Frontiers in Microbiology, 8, 1127, 2017.
 
[36]  Kameshwar, A.K. and Qin, W. “Recent developments in using advanced sequencing technologies for the genomic studies of lignin and cellulose degrading microorganisms”. International Journal of Biology Sciences, 12, 156-171, 2016.
 
[37]  Bastian, F., Bouziri, L., Nicolardot, B. and Ranjard, L. “Impact of wheat straw decomposition on successional patterns of the structure of the soil microbial community”. Soil Biology and Biochemistry, 41, 262-275, 2009.
 
[38]  Nelson, M.B., Berlemont, R., Martiny, A.C., and Martiny, J.B.H. “Nitrogen Cycling Potential of a Grassland Litter Microbial Community”. Applied and Environmental Microbiology, 81, 7012-7022, 2015.
 
[39]  Liu, H., Carvalhais, L.C., Crawford, M., Dang, Y.P., Dennis, P.G. and Schenk, P.M. “Strategic tillage increased the relative abundance of Acidobacteria but did not impact on overall soil microbial properties of a 19-year no-till Solonetz”. Biology and Fertility of Soils, 52, 1021-1035, 2016.
 
[40]  Lagos, L., Maruyama, F., Nannipieri, P., Mora, M.L., Ogram, A. and Jorquera, M.A. “Current overview on the study of bacteria in the rhizosphere by modern molecular techniques: a mini‒review”. Journal of Soil Science and Plant Nutrition, 15, 504-523, 2015.
 
[41]  Paul, E.A. and Clark, F.E. Soil Microbiology and Biochemistry. Academic Press, USA, 1996.
 
[42]  Zhou, W.P., Shen, W.J., Li, Y.E. and Hui, D.F. “Interactive effects of temperature and moisture on composition of the soil microbial community”. European Journal of Soil Science, 68, 909-918, 2017.
 
[43]  Sheik, C.S., Beasley, W.H., Elshahed, M.S., Zhou, X., Luo, Y. and Krumholz, L.R. “Effect of warming and drought on grassland microbial communities”. The ISME Journal, 5, 1692-1700, 2011.
 
[44]  Lauber, C.L., Hamady, M., Knight, R. and Fierer, N. “Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale”. Applied and Environmental Microbiology, 75, 5111-5120, 2009.
 
[45]  Li, Q., Song, X., Gu, H. and Fei, G. “Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations”. Scientific Reports, 6, 2823, 2016.