World Journal of Agricultural Research. 2023, 11(1), 30-38
DOI: 10.12691/WJAR-11-1-5
Original Research

Assessment of Mycorrhizal Fungi Efficiency on Acacia’s Growth Performance under Water Stress

Kamal Hassan Suliman1, Fahad Nasser Al-Barakah2, Abdulaziz Muhmmad Assaeed2, Elgodah H. Ahmed1, Seif Aldin Dawina Abdallah Fragallah1, Elshiekh A.Ibrahim1 and Ahmed M. El Naim1,

1Faculty of Natural Resources and Environmental Studies, University of Kordofan. P.O Box 160, El Obied, Sudan

2College of Food and Agriculture Sciences, King Saud University, P.O. Box; 2640, Riyadh, Saudi Arabia

Pub. Date: March 26, 2023

Cite this paper

Kamal Hassan Suliman, Fahad Nasser Al-Barakah, Abdulaziz Muhmmad Assaeed, Elgodah H. Ahmed, Seif Aldin Dawina Abdallah Fragallah, Elshiekh A.Ibrahim and Ahmed M. El Naim. Assessment of Mycorrhizal Fungi Efficiency on Acacia’s Growth Performance under Water Stress. World Journal of Agricultural Research. 2023; 11(1):30-38. doi: 10.12691/WJAR-11-1-5


To assess mycorrhizal fungi efficiency on Acacia growth performance under water shortage condition, three leguminous plant species (Acacia tortilis, Acacia ehrenbergiana and Acacia gerrardii) were selected under greenhouse conditions in washed soil. The mycorrhizal fungal colonization was used to enhance plants growth under water deficit. Three watering levels; 85%, 75%, 50% and 25% of Field Capacity (FC) in the presence of Mycorrhizal and non-Mycorrhizal applied on grown trees for 5 months. This treatment impact on the plants was assessed by comparing plants heights, number of leaves shoot, root fresh, dry weight and Relative Growth Rate (RGR), and by measuring mycorrhizal colonization percentage and intensities. The results indicated that Arbuscular Mycorrhizal Fungi (AMF) significantly increased colonization percentage irrespective of acacia species. The maximum of root colonization percentage obtained at 75 % FC. Greater mycelium infection was observed at A. tortilis, A. gerrardii and A. ehrenbergiana (88.1%, 87.4%, and 86.4% respectively) at FC 75%, while the mycelium infection decreased at FC 25% at all species. The maximum vesicles were found with A. ehrenbergiana, A. gerrardii and A. tortilis (85.3%, 73.2%, and 53.5% respectively) at 75% FC, while the highest infection of Arbuscular (33.6%) was recorded with A. ehrenbergiana under 75% FC. Colonization intensity % significantly affect A. gerrardii registered highest mycelium intensity (66.3%) amended with 75% FC. The greater vesicles infection (62.6%) recorded with A. ehrenbergiana at the same FC, while maximum Arbuscular density (35.7%) with A. ehrenbergiana under 75% FC. Irrespective of Acacia species mycorrhizal fungi significantly enhanced the trees growth (plant height, leaves, shoot and root fresh weight, shoot dry weight and RGR) at 75% FC.


water stress, acacia, mycorrhizal, growth, inoculum


Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Gomiero, T. “Soil degradation, land scarcity and food security: Reviewing a complex challenge”. Sustainability, 8(3), 281, 2016.
[2]  Lee, E. H., Lee, B. E., & Kim, J. G. “Effects of water levels and soil nutrients on the growth of Iris laevigata seedlings”. Journal of Ecology and Environment, 42(1), 1-7, 2018.
[3]  Plett, D. C., Ranathunge, K., Melino, V. J., Kuya, N., Uga, Y., & Kronzucker, H. J. “The intersection of nitrogen nutrition and water use in plants: new paths toward improved crop productivity”. Journal of experimental botany, 71(15), 4452-4468, 2020.
[4]  Fakhech, A., Manaut, N., Ouahmane, L., & Hafidi, M. “Contributions of indigenous arbuscular mycorrhizal fungi to growth of retama monosperma and acacia gummifera under water stress (case study: essaouira sand dunes forest) “. Journal of Sustainable Forestry, 38(7), 686-696. 2019.
[5]  Zhu, X., Song, F., Liu, S., & Liu, F. “Role of arbuscular mycorrhiza in alleviating salinity stress in wheat (Triticum aestivum L.) Grown under ambient and elevated CO2”. Journal of Agronomy and Crop Science, 202(6), 486-496, 2016.
[6]  Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., & Battaglia, M. L. (2021). “Drought stress impacts on plants and different approaches to alleviate its adverse effects”. Plants, 10(2), 259, 2016.
[7]  Jibo, A. U., & Barker, M. G. “Effects of water deficit on growth, biomass allocation and photosynthesis of A. Senegal seedlings from Nguru and Gujba provinces of Yobe state, north eastern Nigeria”. Journal of Applied Sciences and Environmental Management, 23(12), 2221-2229, 2019.
[8]  Thakur, J., & Shinde, B. “Effect of water stress and AM fungi on the growth performance of pea”. International Journal of Applied Biology, 4(1), 36-43, 2020.
[9]  Medyouni, I., Zouaoui, R., Rubio, E., Serino, S., Ahmed, H. B., & Bertin, N. (2021). “Effects of water deficit on leaves and fruit quality during the development period in tomato plant”. Food Science & Nutrition, 9(4), 1949-1960.
[10]  Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L.-S. P.. “Response of plants to water stress”. Frontiers in Plant Science, 5, 86, 1-8, 2014.
[11]  Smeenk, J., & Ianson, D. (2010). “Mycorrhizae in the Alaska landscape”. University of Alaska Fairbanks Cooperative Extension Service and United States Department of Agriculture, Alaska, USA:1-8.
[12]  Abd El-Fattah, D. A., Maze, M., Ali, B. A., & Awed, N. M. “Role of mycorrhizae in enhancing the economic revenue of water and phosphorus use efficiency in sweet corn (Zea mays L. var. saccharata) plants”. Journal of the Saudi Society of Agricultural Sciences. 2022.
[13]  Li, J., Meng, B., Chai, H., Yang, X., Song, W., Li, S., & Sun, W. “Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis”. Frontiers in Plant Science, 10, 499, 2019.
[14]  Rapparini, F., & Peñuelas, J. “Mycorrhizal fungi to alleviate drought stress on plant growth”. In Use of microbes for the alleviation of soil stresses, Vol. 1, 21- 42, 2014.
[15]  Ye, Q., Wang, H., & Li, H. “Arbuscular Mycorrhizal Fungi Improve Growth, Photosynthetic Activity, and Chlorophyll Fluorescence of Vitis vinifera L. cv. Ecolly under Drought Stress”. Agronomy, 12(7), 1563, 2022.
[16]  Hoffmann, B., Varga, B., Nagy, E., Hoffmann, S., Darkó, É., Tajti, J., & Janda, T. “Effects of Nitrogen and Water Deficiency on Agronomic Properties, Root Characteristics and Expression of Related Genes in Soybean”. Agronomy, 11(7), 1329, 2021.
[17]  Hazzoumi, Z., Moustakime, Y., Hassan Elharchli, E., & Joutei, K. A. “Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L) “. Chemical and Biological Technologies in Agriculture, 2(1), 10, 2015.
[18]  Suliman, K. L., Barakah, F. N., & Assaeed, A. M. “Structural colonization of arbuscular mycorrhizal fungi in three acacia species of different sizes in Riyadh, Saudi Arabia”. International Journal of Biosciences, 10, 308-318, 2017.
[19]  Jadrane, I., Dounas, H., Kouisni, L., Aziz, F., & Ouahmane, L. “Inoculation with selected indigenous mycorrhizal complex improves Ceratonia siliqua’s growth and response to drought stress”. Saudi Journal of Biological Sciences, 28(1), 825-832, 2021.
[20]  Ahmed, A., Abdelmalik, A., Alsharani, T., Al-Qarawi, B. A. Q., & Aref, I. “Response of growth and drought tolerance of Acacia seyal Del. Seedlings to arbuscular mycorrhizal fungi”. Plant, Soil and Environment, 66(6), 264-271, 2020.
[21]  Sarkar, J., Ray, A., Chakraborty, B., & Chakraborty, U. “Anti oxidative changes in Citrus reticulata L. induced by drought stress and its effect on root colonization by arbuscular mycorrhizal fungi”. Eur. J. Biol. Res, 6, 1-13, 2016.
[22]  Ndiaye, M., Cavalli, E., Manga, A. G. B., and Diop, T. A. “Improved Acacia senegal growth after inoculation with arbuscular mycorrhizal fungi under water deficiency conditions”. Int. J. Agric. Biol., 2, 271-274, 2011.
[23]  Chen W.L., Koide R.T., Adams T.S., DeForest J.L., Cheng L., Eissenstat D.M. “Root morphology and mycorrhizal symbioses” (2016).
[24]  Aslanpour, M., Baneh, H. D., Tehranifar, A., & Shoor, M. “Effect of water stress on growth traits of roots and shoots (fresh and dry weights, and amount of water) of the white seedless grape”. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 10(2), 169-18, 2019.
[25]  Shao Y.D., Zhang D.J., Hu X.C., Wu Q.S., Jiang C.J., Xia T.J., Gao X.B., Kuča K. “Mycorrhiza-induced changes in root growth and nutrient absorption of tea plants”. Plant, Soil and Environment, 64: 283–289, 2018.
[26]  Wei, B., Zhong, L., Liu, J., Zheng, F., Jin, Y., Xie, Y. & Yu, M. “Differences in Density Dependence among Tree Mycorrhizal Types Affect Tree Species Diversity and Relative Growth Rates”. Plants, 11(18), 2340, 2022.
[27]  Pavithra D., Yapa N. “Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants”. Ground Water for Sustainable Development, 7: 490-494, 2018
[28]  Badr, M.A., El-Tohamy, W.A., Abou-Hussein, S.D., Gruda, N.S., “Deficit irrigation and arbuscular mycorrhiza as a water-saving strategy for eggplant production”. Horticulturae 6, 45, ,
[29]  Plett J.M., Kemppainen M., Kale S.D., Kohler A., Legué V., Brun A., Tyler B.M., Pardo A.G., Martin F. “A secreted effector protein of Laccaria bicolor is required for symbiosis development”. Current Biology, 21: 1197-1203, 2011.
[30]  Khaliq, A., Perveen, S., Alamer, K. H., Zia Ul Haq, M., Rafique, Z., Alsudays, I. M., & Attia, H. “Arbuscular Mycorrhizal Fungi Symbiosis to Enhance Plant–Soil Interaction”. Sustainability, 14(13), 7840, 2022.
[31]  Wang, J., Zhou, Y., Lin, W., Li, M., Wang, M., Wang, Z., Kuang, Y., Tian, P., “Effect of an Epichloë endophyte on adaptability to water stress in Festuca sinensis”. Fungal Ecol. 30, 39-47, 2017.
[32]  Begum, N.,Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., & Zhang, L. “Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance”. Frontiers in plant science, 10, 1068, 2019.
[33]  Sensoy, S., Demir, S., Turkmen, O., Erdinc, C., Burak, C. and Savur, O. “Responses of some different pepper (Capsicum annum L.) genotypes to inoculation with two different arbuscular mycorrhizal fungi”. Scientia Horticulturae, 113: 92-95, 2007.
[34]  Hunt, R., and Cornelissen, J. H. C. “Components of relative growth rate and their interrelations in 59 temperate plant species”. The New Phytologist, 135(3), 395-417, 1997.
[35]  Hu, Y. and Schmidhalter, U. “Drought and salinity: A comparison of their effects on mineral nutrition of plants”. Plant Nutrition. 168: 541-549. 2005.
[36]  Oukaltouma, K., El Moukhtari, A., Lahrizi, Y., Mouradi, M., Farissi, M., Willems, A., & Ghoulam, C. “Phosphorus deficiency enhances water deficit impact on some morphological and physiological traits in four faba bean (Vicia faba L.) varieties”. Italian Journal of Agronomy, 16(1). 2021.