Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
World Journal of Agricultural Research. 2023, 11(1), 1-7
DOI: 10.12691/WJAR-11-1-1
Original Research

Demography and Feeding Damage of Two Pest Insects on Tolerant and Susceptible Genotypes of the Bottle Gourd Lagenaria siceraria (Molina) Standley (Cucurbitaceae)

Bi Nady Delphin Fouha1 and Bi Irié Arsène Zoro1,

1Unit of Crop husbandry and Breeding, University Nangui Abrogoua; 02 PO Box 801 Abidjan 02, Ivory Coast

Pub. Date: February 15, 2023

Cite this paper

Bi Nady Delphin Fouha and Bi Irié Arsène Zoro. Demography and Feeding Damage of Two Pest Insects on Tolerant and Susceptible Genotypes of the Bottle Gourd Lagenaria siceraria (Molina) Standley (Cucurbitaceae). World Journal of Agricultural Research. 2023; 11(1):1-7. doi: 10.12691/WJAR-11-1-1

Abstract

The demographical traits and damage from two pest insects (Asbecesta cyanipennis and Lamprocopa occidentalis) feeding on the bottle gourd (Lagenaria siceraria) were assessed on farm in Manfla (Center Ivory Coast). Two accessions (tolerant and susceptible) were observed in monoculture and in intercropping, during the first cropping season of 2018. The insect main development stages, the extent of plant organ attacks, and yield components of the cucurbit were assessed. Results indicated that L. occidentalis accomplishes its life cycle on bottle gourd, suggesting that the insect satisfies both its reproductive and food needs on this plant. A. cyanipennis whose eggs and larvae have not been observed on bottle gourd, appeared as an opportunistic herbivorous on this plant. Both insects feed on all parts of the bottle gourd (leaf, flower, and fruit), with up to 50% damaged leaves, depending on accession type, plant growth stage, and cropping system. Foliar damage caused by the studied insects was greater on the susceptible accession, particularly at the tendril stage and in monoculture. The control of L. occidentalis is thus a challenge for sustainable protection of bottle gourd against pest insects. To address this challenge, intercropping could give satisfactory results in terms of leaf damage reduction and yield gain.

Keywords

Asbecesta cyanipennis, bottle gourd, feeding damage, live cycle, Lagenaria siceraria, Lamprocopa occidentalis, yield loss

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Achigan-Dako, G.E., Fanou, N., Kouke, A., Avohou, H., Vodouhe, R.S., Ahanchede, A.. Évaluation Agronomique de Trois Espèces de Egusi (Cucurbitaceae) Utilisées Dans l’alimentation Au Bénin et Élaboration d’un Modèle de Prédiction Du Rendement. Biotechnologie, Agronomie, Société et Environnement 2006, 10: 121-129.
 
[2]  Loukou, A.L., Gnakri, D., Djè, Y., Kippré, A.V., Malice, M., Baudoin, J.P., Zoro Bi, I.A. Macronutrient Composition of Three Cucurbit Species Cultivated for Seed Consumption in Côte d’Ivoire. African Journal of Biotechnology 2007, 6: 529-533.
 
[3]  Prajapati, R.P., Kalariya, M., Parmar, S.K., Sheth, N.R.. Phytochemical and Pharmacological Review of Lagenaria sicereria. Journal of Ayurveda and Integrative Medicine 2010, 1: 266-272.
 
[4]  Zahoor, M., Ikram, M., Nazir, N., Naz, S., Batiha, G.E.-S., Kamran, A.W., Tomczyk, M., Kabrah, A. A Comprehensive Review on the Medicinal Importance; Biological and Therapeutic Efficacy of Lagenaria siceraria (Mol.) (Bottle Gourd) Standley Fruit. Current Topics in Medicinal Chemistry 2021, 21, 1788-1803.
 
[5]  Zoro Bi, I.A., Koffi, K.K., Djé, Y. Caracterisation Botanique et Agronomique de Trois Espèces de Curcubites Consommées En Sauce En Afrique de l’Ouest: Citrullus Sp., Cucumeropsis mannii Naudin et Lagenaria siceraria (Molina) Standley. Biotechnologie, Agronomie, Société et Environnement. 2003, 7, 189-199.
 
[6]  Athey, K.J., Peterson, J.A., Dreyer, J., Harwood, J.D., Williams, M.A. Effect of Breathable Row Covers and Ground Cover on Pest Insect Levels and Cucurbit Yield. Journal of Economic Entomology, 2022, 115, 193-200.
 
[7]  Egerer, M., Liere, H., Lucatero, A., Philpott, S.M. Plant Damage in Urban Agroecosystems Varies with Local and Landscape Factors. Ecosphere 2020, 11, e03074.
 
[8]  Fomekong, A., Messi, J., Kekeunou, S., Tchuenguem- Fohouo, F.N. Entomofauna of Cucumeropsis mannii Naudin, Its Impact on Plant Yield and Some Aspects of the Biology of Dacus bivitattus (Diptera: Tephritidae). African Journal of Agricultural Research. 2008, 3, 363-370.
 
[9]  Ingwell, L.L., Kaplan, I. Insect Exclusion Screens Reduce Cucumber Beetle Infestations in High Tunnels, Increasing Cucurbit Yield. Journal of Economic Entomology 2019, 112, 1765-1773.
 
[10]  Edelson, J.V., Duthie, J., Roberts, W. Watermelon Seedling Growth and Mortality as Affected by Anasa tristis (Heteroptera: Coreidae). Journal of Economic Entomology, 2002, 95, 595-597.
 
[11]  Morimoto, Y., Maundu, P., Fujimaki, H., Morishima, H. Diversity of Landraces of the White-Flowered Gourd (Lagenaria siceraria) and Its Wild Relatives in Kenya: Fruit and Seed Morphology. Genetic Resources and Crop Evolution, 2005, 52, 737-747.
 
[12]  Saeed, M., Khan, M.S., Amir, K., Bi, J.B., Asif, M., Madni, A., Kamboh, A.A., Manzoor, Z., Younas, U., Chao, S. Lagenaria siceraria Fruit: A Review of Its Phytochemistry, Pharmacology, and Promising Traditional Uses. Frontiers in Nutrition,. 2022, 9, 927361.
 
[13]  Kaiser, A., Burger, P. Understanding Diversity in Farmers’ Routinized Crop Protection Practices. Journal of Rural Studies, 2022, 89, 149-160.
 
[14]  Marliac, G., Penvern, S., Barbier, J.-M., Lescourret, F., Capowiez, Y. Impact of Crop Protection Strategies on Natural Enemies in Organic Apple Production. Agronomy for Sustainable Development, 2015, 35, 803-813.
 
[15]  Furlan, L., Milosavljević, I., Chiarini, F., Benvegnù, I. Effects of Conventional versus No-Tillage Systems on the Population Dynamics of Elaterid Pests and the Associated Damage at Establishment of Maize Crops. Crop Protection, 2021, 149, 105751.
 
[16]  Hooks, C.R., Johnson, M.W. Impact of Agricultural Diversification on the Insect Community of Cruciferous Crops. Crop Prot. 2003, 22, 223-238.
 
[17]  Karungi, J., Nampala, M.P., Adipala, E., Kyamanywa, S., Ogenga-Latigo, M.W. Population Dynamics of Selected Cowpea Insect Pests as Influenced by Different Management Practices in Eastern Uganda. African Crop Science Journal, 1999, 7, 487-495.
 
[18]  Adja, N.A., Danho, M., Alabi, T.A.F., Gnago, A.J., Zimmer, J.-Y., Francis, F., Kouassi, K.P., Baudoin, J.-P., Zoro, B.I.A. Entomofauna Associated with African Oleaginous Cucurbits (Lagenaria siceraria Molina (Standl.1930) and Citrullus lanatus Thumb (Matsum & Nakai 1916)) and Impact of Pests on Production. Annales de la Société entomologique de France NS 2014, 50, 301-310.
 
[19]  Anzara, G.K.G.R., Koffi, K.K., Coulibally, S.S., Fouha, B.N.D., Baudoin, J.-P., Campa, C., Zoro, B.I.A. Influence of Herbivorous Insects on the Production of Lagenaria siceraria (Molina) Standley (Cucurbitaceae). African Journal of Plant Science, 2015, 9, 449-456.
 
[20]  Kouassi, N.J., Zoro Bi, I.A. Effect of Sowing Density and Seedbed Type on Yield and Yield Components in Bambara Groundnut (Vigna subterranea) in Woodland Savannas of Cote D’ivoire. Experimental Agriculture, 2010, 46, 99-110.
 
[21]  Yao, K.A., Koffi, K.K., Ondo-Azi, S.A., Baudoin, J.-P., Zoro, B.I. Seed Yield Component Identification and Analysis for Exploiting Recombinative Heterosis in Bottle Gourd. International Journal of Vegetable Science,. 2015, 21, 441-453.
 
[22]  Koffi, K.K., Gbotto, A.A., Malice, M., Dje, Y., Bertin, P., Baudoin, J.-P., Zoro Bi, I.A. Morphological and Allozyme Variation in a Collection of Cucumeropsis mannii Naudin (Cucurbitaceae) from Côte d’Ivoire. Biotechnologie, Agronomie, Société et Environnement. 2008, 36, 777-789.
 
[23]  R Development Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing 2011.
 
[24]  Anantha, K.H., Garg, K.K., Barron, J., Dixit, S., Venkataradha, A., Singh, R., Whitbread, A.M. Impact of Best Management Practices on Sustainable Crop Production and Climate Resilience in Smallholder Farming Systems of South Asia. Agricultural Systems, 2021, 194, 103276.
 
[25]  Reddy, B.V.S., Reddy, P.S., Bidinger, F., Blümmel, M. Crop Management Factors Influencing Yield and Quality of Crop Residues. Field Crops Research, 2003, 84, 57-77.
 
[26]  Goré, B.B., Baudoin, J.-P., Zoro, B.I. Effects of the Numbers of Foliar Insecticide Applications on the Production of the Oilseed Watermelon Citrullus lanatus. Sciences & Nature, 2011, 8, 53-62.
 
[27]  Patel, S., Rauf, A. Edible Seeds from Cucurbitaceae Family as Potential Functional Foods: Immense Promises, Few Concerns. Biomedicine & Pharmacotherapy, 2017, 91, 330-337.
 
[28]  Sharma, A., Rana, C., Chiwani, K. Important Insect Pests of Cucurbits and Their Management. In Handbook of cucurbits: Growth, cultural practices and physiology; Pessarakli, M., Ed.; CRC Press: Boca Raton, Florida (USA), 2016; pp. 327-359.
 
[29]  Cave, G.L., West, A.J., McCord, M.G., Koene, B., Beck, J.B., Deguenon, J.M., Luan, K., Roe, R.M. Novel 3-D Spacer Textiles to Protect Crops from Insect Infestation and That Enhance Plant Growth. Agriculture 2022, 12.
 
[30]  Nordey, T., Deletre, E., Mlowe, N., Martin, T. Nethouses Protect Cucumber Plants from Insect Pests and Increase Yields in Eastern Africa. Journal of Horticultural Science and Biotechnology, 2020, 95, 673-678.
 
[31]  Chidawanyika, F., Mudavanhu, P., Nyamukondiwa, C. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions. Insects 2012, 3, 1171-1189.
 
[32]  Nawaz, A., Sufyan, M., Gogi, M.D., Javed, M.W. Sustainable Management of Insect-Pests. In Innovations in sustainable agriculture; Farooq, M., Pisante, M., Eds.; Springer International Publishing: Cham, 2019; pp. 287-335.
 
[33]  Jenkins, J.N., Maxwell, F.G., Lafever, H.N. The Comparative Preference of Insects for Glanded and Glandless Cottons. Journal of Economic Entomology, 1966, 59, 352-356.
 
[34]  Altermatt, F., Pearse, I.S. Similarity and Specialization of the Larval versus Adult Diet of European Butterflies and Moths. The American Naturalist, 2011, 178, 372-382.
 
[35]  Madembo, C., Mhlanga, B., Thierfelder, C. Productivity or Stability? Exploring Maize-Legume Intercropping Strategies for Smallholder Conservation Agriculture Farmers in Zimbabwe. Agricultural Systems, 2020, 185, 102921.
 
[36]  Mthembu, B.E.; Everson, T.M.; Everson, C.S. Intercropping Maize (Zea mays L.) with Lablab (Lablab purpureus L.) for Sustainable Fodder Production and Quality in Smallholder Rural Farming Systems in South Africa. Agroecol. Sustainable Food Systems, 2018, 42, 362-382.
 
[37]  Tripathi, S.C., Venkatesh, K., Meena, R.P., Chander, S., Singh, G.P. (2021). Sustainable Intensification of Maize and Wheat Cropping System through Pulse Intercropping. Scientific Reports, 11: 1-10.