Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
World Journal of Agricultural Research. 2022, 10(3), 70-75
DOI: 10.12691/WJAR-10-3-2
Original Research

Biomass Production of Brachiaria ruzizienzis and Crotalaria retusa in Different Cropping Systems on an Andic Ferralsol in Western Highlands of Cameroon

Beyegue Djonko H.1, , Tatang Tadjufo A.1, Mvondo-Awono J.P.2, Gafe Pelap H.1 and Tankou C.M.1

1University of Dschang, Faculty of Agronomy and Agricultural Sciences, Department of Crop Sciences, P.O. Box 222 Dschang, Cameroon

2University of Buea, Faculty of Agriculture and Veterinary Medicine, Department of Agronomy and Applied Molecular Sciences, P.O. Box 63 Buea, Cameroon

Pub. Date: October 22, 2022

Cite this paper

Beyegue Djonko H., Tatang Tadjufo A., Mvondo-Awono J.P., Gafe Pelap H. and Tankou C.M.. Biomass Production of Brachiaria ruzizienzis and Crotalaria retusa in Different Cropping Systems on an Andic Ferralsol in Western Highlands of Cameroon. World Journal of Agricultural Research. 2022; 10(3):70-75. doi: 10.12691/WJAR-10-3-2

Abstract

Benefits associated with cover crops in direct seeding mulch-based cropping systems (DMC) often depend on the establishment of a highly productive cover crop community. The objective of this study was to assess biomass production for the implementation of DMC and its efficiency based on Land Equivalent Ratios (LER) of Brachiaria ruziziensis and Crotalaria retusa grown in different cropping systems on an Andosol in the Western Highlands of Cameroon. The six treatments were pure stands and combinations of one or two lines of each cover crop. These were assigned to experimental units in a randomized complete bloc design with four replications. Biomass production, ability to start DMC and Land Equivalent Ratios (LER) were used to compare treatments. B. ruziziensis produced 10.51 t DM ha-1 in pure stands and 2.9 to 5.37 t DM ha-1 in intercropping. C. retusa produced 5.03 t DM ha-1 in pure stands and 2.88 to 5.28 t DM ha-1 in intercropping. There were highly significant differences (p < 0.01) among treatments for total biomass production. Biomass production was significantly higher when two lines of B. ruziziensis were associated with a single line of C. retusa. Intercropping one line of B. ruziziensis and one line of C. retusa was the only combination that could not allow the implementation of DMC the following season. LER larger than 1 for the other intercropping indicated their superiority compared to pure stands. Growing B. ruziziensis and C. retusa during the first season with one line of one species and two lines of the other species, or two lines of each crop species were considered appropriate for the implementation of DMC. Results provided a basis for DMC implementation using intercropping of B. ruziziensis and C. retusa as cover crops during the first cropping season. Further studies are necessary to evaluate the residual effects of the biomass produced.

Keywords

direct seeding mulch-based cropping systems (DMC), Brachiaria ruziziensis, Crotalaria retusa, intercropping, cover crops, biomass, LER (Land Equivalent Ratio)

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Erenstein, O. (2003). Smallholder conservation farming in the tropics and sub-tropics: a guide to the development and dissemination of mulching with crop. Agric. Ecosyst. and Environ., 100: 17-37.
 
[2]  M'biandoun, M., Dongmo, A. L., Balarabe, O. et Nchoutnji, I. 2010. Systèmes de culture sur couverture végétale en Afrique centrale: conditions techniques et socioéconomique pour son développement. Actes du colloque « Savanes africaines en développement: innover pour durer », 20-23 avril 2009, Garoua, Cameroun.
 
[3]  Mvondo-Awono, J.P., Boukong, A., Beyegue, D. H., Abou Abba, A., Mvondo-Ze, D.A., Passale, M. et Lawane. 2012. Production de biomasse de Brachiaria ruziziensis (Germain et Evrard) en vue de la mise en place de systèmes de culture sous couvertures végétales dans la zone cotonnière du Cameroun. Cameroon Journal of Experimental Biology.8 (1): 1-7.
 
[4]  Finney, D.M., White, C.M. and Kaye, J.P. 2016. Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures. Agronomy Journal, 108: 39-52.
 
[5]  Wortman, S.E., Francis, C. A. and Lindquist, J.L. 2012. Cover crop mixtures for the Western Corn Belt: opportunities for increased productivity and stability. Agronomy Journal, 104 (3): 699-705.
 
[6]  Nascente, A.S., Lacerda, M.C, Lanna, A. C., Corsi de Filippi, M.C. and Silva, D.M. 2016. Cover crops can affect soil attributes and yield of upland rice, Australian journal of Crop science. 10(2): 176-184.
 
[7]  Séguy, L. 2006. Suivi évaluation et proposition de recherche-action pour la diffusion du semis direct sur couverture végétale au Nord Cameroun. CIRAD/IRAD/AFD/SODECOTON.
 
[8]  Mvondo-Awono J. P., Boukong A., Beyegue, D. H., Abou Abba, A., Mvondo-Ze D. A., Teizem, B. and Guimbirke, G. 2013. Stylosanthes Guianensis Seeding Year Mulch Evolution and Residual Effects on a Subsequent Maize Crop in Northern Cameroon. World Journal of Agricultural Sciences 9 (1): 73-79.
 
[9]  FAO.2016. FAO: AG: Agriculture de conservation. Available atwww.fao.org/ag/ca/fr/1a.html.
 
[10]  Hinimbio, T.P., Madi, A. and Mvondo Awono, J.P. 2018. Réponse du maïs aux effets de réhabilitation de la fertilité des sols liés à la légumineuse Crotalaria juncea L. au Nord Cameroun, Afrique Science 14(4): 423-438.
 
[11]  Tatang, T.A., Beyegue, D.H. and Mvondo-Awono, J.P. 2022. “Wheat Production under Mulches of Preceeding Brachiaria ruziziensis and Crotalaria juncea on Andic Ferrasol of Western Highlands of Cameroon.” World Journal of Agricultural Research, 10 (2): 36-43.
 
[12]  Séguy, L. 2008. Rapport de mission au Cameroun. Comment passer des TCS (Techniques Culturales Simplifiées) actuellement très largement dominantes aux SCV. Rééquilibrer l’exploitation agricole des grandes unités de sol de la région Nord du Cameroun. Mission du 13 au 24 septembre 2008. 97 p.
 
[13]  Mazetto Júnior, J. C., Torres, J. L. R., Costa, D. D., Silva, V. R., Menezes de Souza, Z. and Lemes, E. M. 2019. Production and Decomposition of Cover Crop Residues and Associations with Soil Organic Fractions. Journal of Agricultural Science, 11(5): 58-69.
 
[14]  Dabney, S. M., Delgado, J. A., Meisinger, J. J., Schomberg, H. H., Liebig, M.A., Kaspar, T. and Mitchell, J., Reeves, W. 2010. Using cover crops and cropping systems for nitrogen management, In: Delgado, JA and Follett, RF (Editors) Advances in nitrogen management for water quality, pp. 231-281. Ankeny, IA: SWCS.
 
[15]  Dugué, P. 2013. Semis direct, Système de culture sur couverture végétale (SCV) et Agroécologie, vers où va – t –on ? Quelques enseignements de l’atelier de capitalisation sur les impacts et effets des systèmes de culture sous couvert végétal. Programme d’appui multi-pays à l’Agro-écologie (Montpellier, Agropolis, 6 au 8 novembre 2013). Montpellier. Alternatives rurales, 5 p.
 
[16]  Randrianjafizanaka, M. T., Autfrayb P., Andrianaivo, A. P., Ramonta Isabelle,s R. and Jonne Rodenburg, J. 2018. Combined effects of cover crops, mulch, zero-tillage and resistant varieties on Striga asiatica (L.) Kuntze in rice-maize rotation systems, Agriculture Ecosystem & environment, 256: 1-24.
 
[17]  Kramberger, B., Gselman, A., Povrsnik, M., Krist, J. and Lesnik, M. 2013. Environmental advantages of binary mixtures of Trifolium incarnatum and Lolium multiflorum over individual pure stands. Plant soil environ 59: 22-28.
 
[18]  Chapagain T., Lee, E. A. and Raizada, M. N. 2020. The Potential of Multi-Species Mixtures to Diversify Cover Crop Benefits. Review, Sunstainability, 12 (2058): 2-16.
 
[19]  Chen, C., Westcott, M., Neill, K., Wichmann, D. and Knox, M. 2004. Row configuration and nitrogen application for barley-pea intercropping in Montana. Agron. J., 96: 1730-1738.
 
[20]  Agegnehu, G., Amare, G. and Woldeyesus, S. 2006. Yield performance and land-use efficiency of barley and faba bean mixed cropping in Ethiopian highlands. Europ. J. Agronomy 25: 202-207.
 
[21]  Ghosh, K., Manna, C., Bandyopadhyay, K., Ajay, Tripathi, K., Wanjari, H., Hati, M., Misra, K., Acharya, L. and Rao, S. 2006. Interspecific interaction and nutrient use in soybean/sorghum intercropping system. Agronomy Journal, 98: 1097-1108.
 
[22]  Shili-Touzi1, I., De Tourdonnet, S., Launay, M. and Doré T. 2010. Does intercropping winter wheat (Triticum aestivum) with red fescue (Festuca rubra) as a cover crop improve agronomic and environmental performance? A modeling approach. Field Crops Research, 116(3): 218-229.
 
[23]  Baldé, A. B., Scopel, E., Affholder, F., Corbeels, M., Da Silva, A. M. F., Xavier, J. H. V. and Wery, J. 2011. Agronomic performance of no-tillage relay intercropping with maize under smallholder conditions in Central Brazil. Field Crops Research, 124, 241-251.
 
[24]  Young-Mathews, A. 2017. Seeding Rates for Legume-Grain Cover Crop Mixes in Western Oregon. FINAL STUDY REPORT NRCS Plant Materials Center, Corvallis, OR. USDA-NRCS. 9p.
 
[25]  Hare, M., Tatsapong, P. and Saipraset, K. 2007. Seed production of two brachiaria hybrid cultivars in North-east Thailand.2.: Closing date defoliation. Tropical grassland, 41: 35-42.
 
[26]  Husson, O., Charpentier, H., Razanamparany, C., Moussa, N., Michellon, R., Naudin, K., Razafintsalama, H., Rakotoarinivo, C., Rakotondramanana and Séguy, L. 2008a. Fiches techniques plantes de couverture: Graminées pérennes (Brachiaria sp.). Manuel pratique du semis direct à Madagascar. Volume III. Chapitre 3. § 4.1. Document obtenu sur le site CIRAD du réseau http://agroecologie.cirad.fr.
 
[27]  Adjolohoun, S., Bindelle, J., Adandedjan, C., Toléba, S., Houinato, M., Kindomihou, V., Nonfon W. et Sinsin, B. 2013. Influence de l’écartement et de la fertilisation azotée sur le rendement et la qualité des semences de Brachiaria ruziziensis en climat tropical subhumide. Fourrages, 216, 339-345.
 
[28]  IT2, 2013. Les Crotalaires/Synthèse. Banne de Guadeloupe & Martinique.
 
[29]  IRAD, 2003. Résultats des travaux réalisés entre mai 2002 et juin 2003 dans le cadre de la Convention de service N° 6/PH2/FFEM/SODECOTON – IRAD. Garoua.
 
[30]  Vandermeer, J. 1989. The ecology of intercropping systems. Cambridge University Press, 237p.
 
[31]  Tendonkeng, F., Boukila, B., Pamo, T. E., MBoko, A., Matumuini, N.E.F. and Zogang, F. B. 2009. Effet de différents niveaux de fertilisation azotée et du stade phénologique sur la croissance et le rendement de Brachiaria ruziziensis dans l’Ouest-Cameroun. Int. J. Biol. Chem. Sci., 3(4): 725-735.
 
[32]  Tendonkeng, F., Boukila, B., Pamo T.E., Mboko, A.V. and Matumuini, N.E.F. 2011. Effets direct et résiduel de différents niveaux de fertilisation azotée sur la croissance et le rendement de Brachiaria ruziziensis à différents stades phénologiques. Tropicultura, 29(4): 197-204.
 
[33]  Azangue, G. J., Nguetsop, V. F., Tendonkeng, F., Wauffo, D. F. et Pamo, T. E. 2019. Effets des différents niveaux de fertilisation aux fientes de poules sur la croissance et la production de biomasse de Brachiaria ruziziensis (Poaceae) en fonction des stades phénologiques à l’Ouest-Cameroun. International Journal Biological Chemical Science. 13(3): 1762-1774.
 
[34]  Sullivan, D. and Andrews, N. (2012). Estimating plant-available nitrogen release from cover crops. International Plant Nutrition Institute, 22 p.
 
[35]  Gastral, F., Julier, B., Surault, F., Litrico, I., Durand, J., Denoue, D., Ghesquière, M. and Sampoux, J.P. 2012. Intérêt des prairies cultivées multi espèces dans le contexte des systèmes de polyculture-élevage. Innovations Agronomiques, 22: 169-183.
 
[36]  Kramberger, B., Gselman, A., Kristl, J., Lešnik, M., Šuštar, V., Muršec, M. and Podvršnik, M. 2014. Winter cover crop: The effects of grass clover mixture proportion and biomass management on maize and the apparent residual N in the soil. European Journal of Agronomy. 55, 63-71.
 
[37]  Julier, B., Louarn, G., Gastal, F., Surault, F., Sampoux, J. P., Maamouri, A. and Fernandez, L. 2014. Les associations graminées - légumineuses prairiales. Comment sélectionner des variétés adaptées pour accroitre leur productivité et faciliter leur conduite ? Innovations Agronomiques 40: 61-72.
 
[38]  Daniaux, C. 2013. La prairie temporaire association graminées-légumineuses: quels intérêts? Filière Ovine et Caprine n045- 4ème trimestre (2013), pp. 26-28.
 
[39]  Smith, R., Atwood, L. and Warren, N. 2014. Increased Productivity of a Cover crop mixture is not associated with enhanced agroecosystem services. Cover crop mixture and agroecosystem services. PLOS ONE, 9: 8 p.
 
[40]  Husson, O., Charpentier, H., Razanamparany, C., Moussa, N., Michellon, R., Naudin, K., Razafintsalama, H., Rakotoarinivo, C., Andrianaivo., A et Rakotondramanana et Séguy, L. 2008b. Le contrôle du striga par les systèmes SCV. Principes et intérêts des SCV: contrôle des pestes végétales. Manuel pratique du semis direct à Madagascar. Volume I. Chapitre 3. § 3.1. Document obtenu sur le site Cirad du réseau http://agroecologie.cirad.fr.