World Journal of Agricultural Research. 2022, 10(3), 64-69
DOI: 10.12691/WJAR-10-3-1
Original Research

Prevalence and Genetic Determinism of Viviparity in the Bottle Gourd Lagenaria siceraria (Molina) Standley (Cucurbitaceae)

Hermann Hippolyte Tro1, Beket Séverin Bonny1, , Kouamé Kévin Koffi1 and Irié Arsène Zoro Bi1

1Breeding and Crop Husbandry Unit, Faculty of Natural Sciences, 02 BP 801, Abidjan 02, Nangui Abrogoua University, Abidjan, Côte d’Ivoire

Pub. Date: October 22, 2022

Cite this paper

Hermann Hippolyte Tro, Beket Séverin Bonny, Kouamé Kévin Koffi and Irié Arsène Zoro Bi. Prevalence and Genetic Determinism of Viviparity in the Bottle Gourd Lagenaria siceraria (Molina) Standley (Cucurbitaceae). World Journal of Agricultural Research. 2022; 10(3):64-69. doi: 10.12691/WJAR-10-3-1


Viviparity or early germination of seeds in fruits still attached to the parent plant is a factor in yield reduction and economic loss in agriculture. Lagenaria siceraria (Molina) Standl. is a plant of nutritional, medicinal and agronomic importance facing a decrease in production due to viviparity. The objective of this work was to study the genetic determinism of viviparity in L. siceraria. Eight accessions (4 viviparous and 4 non-viviparous) resulting from a screening of 100 accessions of two cultivars (Calabash and Egussi) of L. siceraria were used in direct and reciprocal crosses. Self-fertilisation of F1 progeny resulted in F2 progeny. Four field experiments in six cycles yielded the different individuals of each generation used in this study. Results indicated that accessions of the gourd cultivar were non-viviparous. The majority (96.67%) of accessions of the cultivar Egussi were viviparous and were present in all agro-ecological collection areas. F1 plants from direct and reciprocal crosses were all non-viviparous. Self-fertilization of F1 plants led to F2 progeny in 3:1 segregation (3 for non-viviparous and 1 for viviparous). The non-viviparous phenotype appeared dominant over the viviparous phenotype. Seed viviparity is controlled by a gene, with an allele pair (V/v). Plants with non-viviparous fruits can be, VV or Vv. Plants with viviparous fruits are vv.


viviparous, non-viviparous, Lagenaria siceraria, self-fertilisation, allele, gene


Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Maikhuri, R., Nautiyal, M., Khali, M. (1991). Lesser-known crops of food value in Garhwal Himalaya and a stratetegy to conserve them. Plant Genetic Resources and Newsletter 96: 33-36.
[2]  Decker-Walters, D., Staub, J., López-Sesé, A., Nakata, E. (2001). Diversity in landraces and cultivars of bottle gourd (Lagenaria siceraria; Cucurbitaceae) as assessed by random amplified polymorphic DNA. Genetic Resources and Crop Evolution 48 (4): 369-380.
[3]  Zoro Bi, I.A., Koffi, K.K., Djè, Y. (2003). Caractérisation botanique et agronomique de trois espèces de cucurbitss consommées en sauce en Afrique de l’Ouest: Citrullus sp., Cucumeropsis mannii Naudin et Lagenaria siceraria (Molina) Standl. Biotechnologie, Agronomie, Société et Environnement 7 (3-4): 189-199.
[4]  Badifu, G.I. (1993). Food potentials of some unconventional oilseeds grown in Nigeria—A brief review. Plant Foods for Human Nutrition 43 (3): 211-224.
[5]  Loukou, A.L., Gnakri, D., Djè, Y., Kippré, A.V., Malice, M., Baudoin, J-P., Zoro Bi, I.A. (2007). Macronutrient composition of three cucurbit species cultivated for seed consumption in Côte d’Ivoire. African Journal of Biotechnology 6 (5): 529-533.
[6]  Ahmad, I., Irshad, M., Rizvi, M.M.A. (2011). Nutritional and medicinal potential of Lagenaria siceraria. International Journal of Vegetable Science 17 (2): 157-170.
[7]  Irshad, M., Ahmad, I., Mehdi, S.J., Goel, H.C., Rizvi, M.M.A. (2014). Antioxidant capacity and phenolic content of the aqueous extract of commonly consumed cucurbits. International Journal of Food Properties 17 (1): 179-186.
[8]  McCreight J.D. (2017). Genetic resources of minor cucurbits. In: Grumet R, Katzir N,. Garcia-Mas J, Eds. Genetics and genomics of the cucurbitaceae., pp 1-12.
[9]  Zoro Bi, I.A, Koffi, K.K., Djè, Y., Malice, M. Baudoin, J-P. (2006). Indigenous Cucurbits of Côte d’Ivoire: a Review of their Genetic Resources. Sciences & Nature 3: 1-9.
[10]  Mandumbu, R., Karavina, C. (2012). Weed suppression and component crops response in maize/pumpkin intercropping systems in Zimbabwe 4 (7): 231-236.
[11]  FAO (2020). Seed Systems. In AGP-Seed Systems,
[12]  Doubi, B.T.S., Kouassi, K.I., Kouakou, K.L., Koffi, K.K., Baudoin, J-P., Zoro Bi, I.A. (2016). Existing competitive indices in the intercropping system of Manihot esculenta Crantz and Lagenaria siceraria (Molina) Standley. Journal of Plant Interactions 11 (1): 178-185.
[13]  Anzara, G.K.G., Koffi, K.K., Coulibaly, S.S., Fouha, B.N.D., Baudoin, J-P., Campa, C., Zoro Bi, I.A. (2015). Influence of herbivorous insects on the production of Lagenaria siceraria (Molina) Standley (Cucurbitaceae). African Journal of Plant Science 9 (11): 449-456.
[14]  Yao, K.B., Konan, A.J., Koffi, K.K., Baudoin, J-P. (2012). Effect of fruit age, pre-storage and seed fermentation durations on seed germination and seedling vigor in Lagenaria siceraria. Journal of Applied Biosciences (49): 3339-3351.
[15]  Cota-Sánchez, J.H. (2018). Precocious germination (vivipary) in tomato: a link to economic loss? Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 88 (4): 1443-1451.
[16]  Kermode, A.R. (2005). Role of Abscisic Acid in Seed Dormancy. Journal of Plant Growth Regulation 24 (4): 319-344.
[17]  Zhou, Y., Tang, H., Cheng, M-P., Dankwa, K.O., Chen, Z-X., Li, Z-Y., Gao, S., Liu, Y-X., Jiang, Q-T., Lan, X-J., Pu, Z-E., Wei, Y-M., Zheng, Y-L., Hickey, L.T., Wang, J-R. (2017). Genome-Wide Association Study for Pre-harvest Sprouting Resistance in a Large Germplasm Collection of Chinese Wheat Landraces. Frontiers in Plant Science 08 (401): 1-13.
[18]  Eliud, R., Reuben, M., Linnet, G. (2010). Longevity of bean (Phaseolus vulgaris) seeds stored at locations varying in temperature and relative humidity. Journal of Agriculture, Pure and Applied Science and Technology 5: 60-70.
[19]  Ali, A., Cao, J., Jiang, H., Chang, C., Zhang, H-P., Sheikh, S.W., Shah, L., Ma, C. (2019). Unraveling Molecular and Genetic Studies of Wheat (Triticum aestivum L.) Resistance against Factors Causing Pre-Harvest Sprouting. Agronomy 9 (3): 1-29.
[20]  Yao, N.R., Oule, A.F., N'goran, K.D. (2013). Etude de vulnérabilité du secteur agricole face aux changements climatiques en Côte d'Ivoire. (MEDD-PNUD) 1-105.
[21]  Soro, G.E., Yao, A.B., Kouame, Y.M., Bi, T.A.G. (2017). Climate change and its impacts on water resources in the Bandama basin, Côte D’ivoire. Hydrology 4 (1): 1-13.
[22]  Cantliffe, D.J. (1998). Seed germination for transplants. HortTechnology 8 (4) : 499-503.
[23]  Copeland, L.O., McDonald, M.B. (2001). Seed drying. In Principles of Seed Science and Technology, pp 268-276.
[24]  N’Gaza, A.L.F., Kouassi, K.I., Koffi, K.K., Kouakou, K.L., Baudoin, J-P., Zoro Bi, I.A. (2019). Prevalence and variation of viviparous germination with respect to fruit maturation in the bottle gourd Lagenaria siceraria (Molina) Standley (Cucurbitaceae). Heliyon 5 (10): 1-7.
[25]  Demir, I., Ellis, R.H. (1992). Changes in seed quality during seed development and maturation in tomato. Seed Science Research 2 (2): 81-87.
[26]  Andreoli, C., Bassoi, M.C., Brunetta, D. (2006). Genetic control of seed dormancy and pre-harvest sprouting in wheat. Scientia Agricola 63 (6): 564-566.
[27]  Utono, I. (2013). Assessment of grain loss due to insect pest during storage for small-scale farmers of Kebbi. IOSR Journal of Agriculture and Veterinary Science 3: 38-50.
[28]  Toro, M.A., Caballero, A. (2005). Characterization and conservation of genetic diversity in subdivided populations. Philosophical Transactions of the Royal Society B: Biological Sciences 360 (1459): 1367-1378.
[29]  Shah, A., Li, D-Z., Gao, L-M., Li, H-T., Möller, M. (2008). Genetic diversity within and among populations of the endangered species Taxus fuana (Taxaceae) from Pakistan and implications for its conservation. Biochemical Systematics and Ecology 36 (3): 183-193.
[30]  N’Dri, A.A., Vroh-Bi, I., Kouamé, P.L., Zoro, B.I.A. (2011). Bases génétiques et biochimiques de la capacité germinative des graines: implications pour les systèmes semenciers et la production alimentaire. Sciences & Nature 8 (1-2): 119-137.
[31]  Zhou, Y., Tang, H., Cheng, M-P., Dankwa, K.O., Chen, Z-X., Li, Z-Y., Gao, S., Liu, Y-X., Jiang, Q-T., Lan, X-J., Pu, Z-E., Wei, Y-M., Zheng, Y-L., Hickey, L.T., Wang, J-R. (2017). Genome-Wide Association Study for Pre-harvest Sprouting Resistance in a Large Germplasm Collection of Chinese Wheat Landraces. Frontiers in Plant Science 08 (401): 1-13.
[32]  Brou, Y.T., Akindès, F., Bigot, S. (2005). La variabilité climatique en Côte d’Ivoire: entre perceptions sociales et réponses agricoles. Cahiers Agricultures 14 (6): 533-540.
[33]  Konaté, S., Kampmann, D. (2010). Atlas de la Biodiversité de l’Afrique de l’Ouest, Tome III. Biota (eds) 3, pp 1-46.
[34]  Yao-Kouamé, A., Allou, K. (2008). Propriété du sol et domestication de Lippia multiflora (Verbenaceae) en Côte d$\backslash$’Ivoire. Agronomie Africaine 20 (1): 97-107.
[35]  Yao, K.B., Koffi, K.K., Mahamadou, S., Baudoin, J-P., Zoro Bi, I.A. (2013). Effects of seed fermentation method on seed germination and vigor in the oleaginous gourd Lagenaria siceraria (Molina) Standl. African Journal of Biotechnology 12 (48): 6723-6729.
[36]  Bolboacă, S.D., Jäntschi, L., Sestraş, A.F., Sestraş, R.E., Pamfil, D.C. (2011). Pearson-Fisher Chi-Square Statistic Revisited. Information 2 (3): 528-545.
[37]  StatSoft (2007). StatSoft, Inc., Tulsa, OK. STATISTICA, Version 8, Ed.,
[38]  Bradford, K.J. (2006). Methods to maintain genetic purity of seed stocks. Agricultural biotechnology in california series (8189): 1-6.
[39]  Ajeigbe, H.A., Kamara, A.Y., Chikoye, D. (2009). Potential of triple and double cropping with and without irrigation in the Sudan and Northern Guinea savanna zones of West Africa. African Crop Science Society: 197-200.
[40]  Cruz-Martínez, V., Castellanos-Hernández, O.A., Acevedo-Hernández, G.J., Torres-Morán, M.I., Gutiérrez-Lomelí, M., Ruvalcaba-Ruiz, D., Zurita, F., Rodríguez-Sahagún, A. (2017). Genetic fidelity assessment in plants of Sechium edule regenerated via organogenesis. South African Journal of Botany 112: 118-122.
[41]  Ochi, Y., Ito, T., Hohjo, M., Tsukagoshi, S., Johkan, M., Maruo, T., Shinohara, Y. (2013). Inhibition of Viviparous Sprouting on Melon Seeds Using High Level of Potassium Fertilization or Abscisic Acid Application. Journal of the Japanese Society for Horticultural Science 82 (3): 227-233.
[42]  Ajayi, S.A., Berjak, P., Kioko, J.I., Dulloo, M.E., Vodouhe, R.S. (2006). Responses of fluted pumpkin (Telfairia occidentalis Hook. f.; Cucurbitaceae) seeds to desiccation, chilling and hydrated storage. South African Journal of Botany 72 (4): 544-550.
[43]  Welbaum, G.E. (1999). Cucurbit seed development and production. HortTechnology 9 (3): 341-348.
[44]  Kobayashi, Y., Nabeta, K., Matsuura, H. (2010). Chemical inhibitors of viviparous germination in the fruit of watermelon. Plant and Cell Physiology 51 (9): 1594-1598.
[45]  Baek, J-S., Chung, N-J. (2014). Influence of rainfall during the ripening stage on pre-harvest sprouting, seed quality, and longevity of rice (Oryza sativa L.). Journal Of The Japanese Society For Horticultural Science 59 (4): 406-412.
[46]  Zhang, Y., Xia, X. & He, Z. (2017). The seed dormancy allele TaSdr-A1a associated with pre-harvest sprouting tolerance is mainly present in Chinese wheat landraces. Theoretical and Applied Genetics 130 (1): 81-89.
[47]  Andreoli, C., Bassoi, M.C., Brunetta, D. (2006). Genetic control of seed dormancy and pre-harvest sprouting in wheat. Scientia Agricola 63 (6): 564-566.
[48]  Barrero, J.M., Cavanagh, C., Verbyla, K.L., Tibbits, J.F., Verbyla, A.P., Huang, B.E., Rosewarne, G.M., Stephen, S., Wang, P., Whan, A. (2015). Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL. Genome Biology 16 (1): 1-18.
[49]  Vetch, J.M., Stougaard, R.N., Martin, J.M., Giroux, M. (2019). Allelic impacts of TaPHS1, TaMKK3, and Vp1B3 on preharvest sprouting of northern great plains winter wheats. Crop Science 59 (1): 140-150.
[50]  Jones, H.D., Peters, N.C.B., Holdsworth, M.J. (1997). Genotype and environment interact to control dormancy and differential expression of the VIVIPAROUS 1 homologue in embryos of Avena fatua. The Plant Journal 12 (4): 911-920.
[51]  Amangoua, N.F., Koffi, K.K., Baudoin, J-P., Zoro Bi, I.A. (2019). Inheritance of fruit neck, rind and seed coat hardness, and seed coat colour in bottle gourd. South African Journal of Plant and Soil 36 (1): 57-64.