Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
World Journal of Agricultural Research. 2022, 10(2), 51-59
DOI: 10.12691/WJAR-10-2-3
Original Research

Physicochemical Assessment and Recovery Kinetics of Furfural from Agricultural Wastes Using Mineral and Acetic Acid

Ifeoma Nwabekee1, , Sunday Eze1, Precious Emole1, Christopher Elekwachi2 and Rutherford Ikenna Esiaba2

1Department of Pure and Industrial Chemistry, Abia State University, PMB 2000, Uturu, Abia State, Nigeria

2Department of Biochemistry, Abia State University, PMB 2000, Uturu, Abia State, Nigeria

Pub. Date: September 14, 2022

Cite this paper

Ifeoma Nwabekee, Sunday Eze, Precious Emole, Christopher Elekwachi and Rutherford Ikenna Esiaba. Physicochemical Assessment and Recovery Kinetics of Furfural from Agricultural Wastes Using Mineral and Acetic Acid. World Journal of Agricultural Research. 2022; 10(2):51-59. doi: 10.12691/WJAR-10-2-3

Abstract

Agricultural wastes rich in bioactive compounds consequently should be considered as raw materials rather than wastes. The use of agricultural wastes as raw materials can help to reduce production cost and contribute to the recycling of waste. Using the acid hydrolysis gravimetric method, furfural was produced and quantified from waste materials; corn cob, sawdust, and rice husk. The obtained results showed varied physicochemical properties of the waste materials, with the cellulose contents varying from 22.8% for sawdust, 38.7% for corn cob, and 30.1% for rice husk. The ash content was 6.9%, 8.5%, and 11.5% for sawdust, corn cob and rice husk respectively. Lignin varied from 16.0% for sawdust, 16.6% for corn cob and 21.8% for rice husk. Bulk density varied from 0.21 g/cm3, 0.27 g/cm3 and 0.29 g/cm3 while the porosity varied from 73.9%, 73.0%, and 67.8% for sawdust, corn cob and rice husk respectively. There were variations in the furfural yield of the different agro-wastes with corn cob having the highest yield 26.1 g amounting to 68.1% of furfural), followed by rice husk (21.6 g; 62.6% of furfural) and then sawdust (19.5 g; 59.5% of furfural). The mineral acids (H2SO4<HCl<H2PO4) have higher yield compared to the acetic acid (CH3COOH). There were variations in the quality characteristics of the furfural produced from different waste materials with the same specific gravity of 1.17 g/cm3, solubility of 8.6%, 8.5% and 8.4%. The kinetics of furfural production indicated that the kinetics data were best fitted by the pseudo-first-order model and this suggests that during the course of the reaction, the concentration of water is nearly constant and therefore the reaction appears to be a first order.

Keywords

agricultural wastes, distillation, furfural, kinetics

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  FAO., The Future of Food and agriculture-Trends and Challenges. Rome, 2017.
 
[2]  Santos, M.J.B. dos., Ludke, M.C.M.M., Ludke, J. V., Torres, T. R., Lopes, L. dos S. &Brito, M. S., Chemical composition and metabolizable energy values of alternative ingredients for broilers. Cienc. Anim. Bras 2013. 14(1): 32-40.
 
[3]  Bos, A. & Hamelinck, C., Greenhouse gas impact of marginal fossil fuel use. Project Number: BIENL14773. 2014.
 
[4]  Wang, R., Balkanski, Y., Boucher, O., Ciais, P., Schuster, G.L., Chevallier, F. & Tao, S., Estimation of global black carbon directs radiative forcing and its uncertainty constrained by observations. Journal of Geophysical Research, 2016. 121(10): 5948-5971.
 
[5]  Wang, W., Ren, J., Li., H., Deng A. & Sun, R., Direct transformation of xyln-type hemicellulose to furfural production from lignocellulosic. Journal of Wood Chemistry and Technology, 2015. 34: 178-190.
 
[6]  Maity, S. K., Opportunities, recent trends and challenges of integrated biorefinery: Renewable and Sustainable Energy Reviews, 2015. 43: 1427-1445.
 
[7]  Schieb, P. A., Lescieux-Katir, H., Thenot, M. & Clement-larosiere, B., Biorefinery 2030: Future prospects for the bioeconomy, Heidelberg: Springer-Verlag. 2015.
 
[8]  Riberio, P. R, Carvalho, J. R. M., Geris, R., Queiroz, V. &Fasico, M., Furfural – da biomassaaolaboratorio de quimicaorganica. Quimica Nova, 2012. 35: 1046-1051.
 
[9]  Reed, N. R & Kwok, E. S. C., Furfural- An overview. Encyclopedia of Toxicology (3rd Edition). 2014. Pp 685-688.
 
[10]  Raman, J. K & Gnansounou, E., Furfural production from empty fruit bunch- A Biorefinery Approach. Industrial Crops and Products, 2015. 69:371-337.
 
[11]  Anil K. M., Amith A., Kiran K. M., Rajeev K. S., Lignocellulosic biorefinery waste or resourses? Waste Refinery 2018. Pp267-297.
 
[12]  Gebre, H., Fisha, K., Kindeya, T., & Gebremichal, T., Synthesis of furfural from bagasse. International letters of chemistry, physics and astronomy. Science press Ltd, Switzerland 2015. 57:72-84.
 
[13]  Lin, L., Yan, R., Liu, Y., & Jiang, W., In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: cellulose, hemicelluloses and lignin, Bioresource Technology 2010. 101(21) 8217-8223.
 
[14]  Onwka, G.I., Food analysis and instrumentation: Theory and practice. 2ndEdn, Napthall. Prints. Surulere Lagos-Nigeria. 2018. Pp 140-160.
 
[15]  Zang, J., zhuang, J., Lin, L., Liu, S. & Zhang, Z., Conversion of D-xylose into furfural with mesoporous molecular sieve MCM-41 as catalyst and butanol as the extraction phase. Biomass Bioenergy 2012. 39: 73-77.
 
[16]  Zhang, T., Kumar, R. &Wyonan, C. E., Enhanced yields of furfural and other products by Simultaneous solvent extraction during thermochemical treatment of cellulosic biomass. Research Advance 2013. 3: 9809-9819.
 
[17]  Seager, S. L., Slabaugh, M. R., Hansen, M. S., Safety Scale Laboratory Experiments. Cengage Learning 2016. p.358.
 
[18]  Simonin, J. P., On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 2016. 300: 254-263.
 
[19]  Kumar, S., Kothari, U., Kong, L., Lee, Y. Y. & Gupta, R. B., Hydrothermal pretreatment of switchgrass and corn stover for production of ethanol and carbon microspheres. Biomass Bioenergy, 2011. 35:956-968.
 
[20]  Zhang, Y., Ghaly, A. E., & Li, B., Physical properties of corn residues. Americaln Journal of Biochemistry and Biotechnology, 2012, 8(2), 44-53
 
[21]  Yau-Hoong Kuan & Min-Tze Liong., Chemical and physicochemical characterization of agrowastes fibrous materials and residue. J. Agic food chem., 2008. 56(19): 9252-7.
 
[22]  Igathinathane, C., Tumuluru, J. S., Sokhansanj, S., Bi, X., & Lim, C. J., Simple and inexpensive method of wood pallets macro-porosity measurement. Bioresource Technology, 2010. 101: 6528-6537.
 
[23]  University of California Furfural. University of California Davis Library. https://chem.libretexts.org/Under_Construction/Stalled_Project_(Not_under_Active_Development)/ Walker/Chemicals/Substance%3AF/Furan. 2019. Accessed 4th August, 2021.
 
[24]  Yemis, O., & Mazza, G., Acid catalyzed convertion of xylose, xylan and straw into furfural by micro-wave assisted reaction. Bioresour. Technol. 2011. 102:7371-7378
 
[25]  Marcotullio, G., & De Jong, W., Chloride ion enhanced furfural formation from D-xylose in dilute aqueous acidic solutions. Green Chem. 2010. 12: 1739-1746.
 
[26]  Sajid M., Bai Y., Liu D. & Zhao X., Conversion of glucose to 5-Hydoxymethylfurfural by co-catalysis of p-Toluenrsulfonic Acid (pTSA) and Chlorides: A comparison based on kinetic modeling. Waste Biomass Valorization, 2021. 12: 3271-3286.
 
[27]  Ameh A. O., Oguche J. E., Tanimu Y. & Egu S. A., Effect of sodium chloride on furfural yield from microalga. FUW Trends in Science & Technology, 2018. 3(2A):461-465.
 
[28]  Dariush, R., Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanatube. Journal of Nanostructure in Chemistry, 2013. 3: 55.
 
[29]  Di Bucchianico, A., Coefficient of determination (R2) in encyclopedia of statistics in quality and reliability, Wiley Online Library, 2008.
 
[30]  Sadh P. K., Duhan S., & Duhan S. J., Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresource and Bioprocessing, 2018. 1: 5.