Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
World Journal of Agricultural Research. 2019, 7(3), 88-93
DOI: 10.12691/WJAR-7-3-2
Original Research

Gene Actions and Combining Ability Analysis for Some Seed Characters in Citrullus Mucosospermus (Fursa)

Kouakou Fulgence Brou1, , Koffi Adjoumani2, Saraka Didier Martial Yao3, Kouamé Guillaume Koffi1, Beket Sévérin Bonny1 and Raoul Sylvère Sié1

1Laboratory of Biology and Amelioration of Vegetable Productions, UFR Sciences of Nature, Nangui Abrogoua University, Abidjan, Côte d’Ivoire

2Department of Sciences and Technologies, Superior Normal School of Abidjan, Abidjan, Côte d’Ivoire

3Department of Biochemistry-Genetic: Pedagogic Unity and Research of Genetic, UFR Biological Sciences, Peleforo Gon Coulibaly University, Korhogo, Côte d'Ivoire

Pub. Date: May 14, 2019

Cite this paper

Kouakou Fulgence Brou, Koffi Adjoumani, Saraka Didier Martial Yao, Kouamé Guillaume Koffi, Beket Sévérin Bonny and Raoul Sylvère Sié. Gene Actions and Combining Ability Analysis for Some Seed Characters in Citrullus Mucosospermus (Fursa). World Journal of Agricultural Research. 2019; 7(3):88-93. doi: 10.12691/WJAR-7-3-2

Abstract

In order to suggest breeding strategies to improve Citrullus mucosospermus (Fursa), 4 × 4 complete diallel cross design involving Bebu, Wlêwlê small seeds 1 (Wss1), Wlêwlê small seeds 2 (Wss2) and Wlêwlê small seeds 3 (Wss3) genotypes was used to assess combining ability and gene actions involved in the inheritance of six seed traits. The F1 direct and reciprocal crosses plus the parental inbred lines coming from these cultivars were grown in a randomized complete block design with three replications. The results indicated the existence of genetic variation between parental lines for all investigated seed traits. Combining ability analysis exhibited the involvement of both additive and non-additive types of gene actions in the expression of all studied traits, suggesting, doing the selection in C. mucosospermus heterogeneous populations for improving these seed traits. Non-additive gene actions were predominant in the inheritance of investigated traits indicating the possibility of the heterosis exploitation or the postponement of selection to later generations for improving genetically these traits. Bebu appeared the best general combiner for Mass of fresh seed, Mass of dry seed, Mass of 100 seeds, seed length and seed width while, Wss1 and Wss2 are the best combiners for percentage of seed integuments. Therefore, parental lines Bebu, Wss1, Wss2 and crosses with high significant specific combining ability effects are proposed for their incorporation in C. mucosospermus breeding programs. The presence of both GCA and SCA effects suggests the use of recurrent reciprocal selection to improve C. mucosospermus seed traits.

Keywords

Bebu, breeding strategies, combining ability, gene actions, Wlêwlê small seeds

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Achigan-Dako EG., Avohou H., Linsoussi C., Ahanchede A., Vodouhe SR. and Blattner F. (2015). Phenetic characterization of Citrullus spp. (Cucurbitaceae) and differentiation of egusi type (C. mucosospermus). Genet. Resour. Crop Evol.
 
[2]  Chomicki G. and Renner SS. (2015). Watermelon origin solved with molecular phylogenetic including Linnaean material: another example of muse omics. New Phytologist. 205: 526-532.
 
[3]  Koffi KK., Anzara GK., Malice M., Djè Y., Bertin P., Baudoin J-P. and Zoro BIA. (2009). Morphological and allozyme variation in a collection of Lagenaria siceraria (Molina) Standl. from Côte d’Ivoire. Biotechnol. Agron. Soc. Environ. 13(2):257-270.
 
[4]  Jensen BD., Touré FM., Mohamed Ag H., Touré FA. and Nantoumé AD. (2011). Watermelons in the Sand of Sahara: Cultivation and use of indigenous landraces in the Tombouctou Region of Mali. Ethnobotany Research & Applications. 9:151-162.
 
[5]  Erhirhie EO. and Ekene NE. (2013). Medicinal Values on Citrullus lanatus (Watermelon): Pharmacological Review. International Journal of Research in Pharmaceutical and Biomedical Sciences. (4):1305-1312.
 
[6]  Manika M., Vani P. and Gupta RK. (2015). Estimation of nutritional, phytochemical and antioxidant activity of seeds of musk melon (Cucumis melo) and watermelon (Citrullus lanatus) and nutritional analysis of their respective oils. Journal of Pharmacognosy and Phytochemistry. 3(6): 98-102.
 
[7]  Guédé SS., Gbogouri GA., Soro D., Koffi KK., Brou K. and Zoro BIA. (2017). Roasting Effect on the Nutritional and Cosmetic Potential of Citrullus Lanatus Kernels Oil. J. Food Res. 6(3): 11-20.
 
[8]  N’Goran NAM., Due AE., Fankroma MT., Kouadio NEJP., Zoro BIA. and Kouamé LP. (2015). Physico-chemical properties and mineral composition of four cultivar seed flours from Citrullus lanatus (Cucurbitaceae) cultivated in Côte d’Ivoire. Int. J. Agron. Agri. Res. 6(1):45-53.
 
[9]  Adjoumani K., Kouonon LC., Koffi GK., Bonny BS., Brou KF., Akaffou DS. and Sié RS. (2016). Analysis on genetic variability and heritability of fruit characters in Citrullus lanatus (Thunb.) Matsumura and Nakai (Cucurbitaceae) cultivars. J. Anim. Plant Sci. 28(1): 4340-4355.
 
[10]  Adjoumani K., Bonny SB., Koffi GK., Kouonon LC., Brou FK. and Sié RS. (2016). Genetic evaluation of seed traits from intraspecific crossing of genetically distinct watermelon varieties. Afr. Crop Sci. J. 24 (2): 143-154.
 
[11]  Goré BBN., Baudoin J-P. and Zoro BIA. (2011). Effects of the numbers of foliar insecticide applications on the production of the oilseed watermelon Citrullus lanatus. Sciences & Nature. 8(1): 53-62.
 
[12]  Zoro BIA., Koffi KK., Djè Y., Malice M. and Baudoin JP. (2006). Indigenous cucurbits of Côte d’Ivoire; a review of their genetic resources. Sciences & Natures. 3(1): 1-9.
 
[13]  Seyyed-Nazari R., Ghadimzadeh M., Darvishzadeh R. and Alavi SR. (2016). Diallel analysis for estimation of genetic parameters in oriental tobacco genotypes. Genetika. 48(1): 125-137.
 
[14]  Farshadfar E., Ghaderi A. and Yaghotipoor A. (2014). Diallel analysis of Physiologic Indicators of Drought Tolerance in Bread Wheat (Triticum aestivumL.). Agricultural Communications. 2(1): 1-7.
 
[15]  Iqbal AM., Nehvi FA., Wani SA., Dar ZA., Lone AA. and Qadri H. (2015). Combining ability study over environments in dry beans (Phaseolus vulgaris L.). SAARC J. Agri. 10(2): 61-69.
 
[16]  Chukwu SC., Okporie EO., Onyishi GC., Ekwu LG., Nwogbaga AC. and Ede NV. (2016). Application of diallel analyses in crop improvement. Agric. Biol. J. N. Am. 7(2): 95-106.
 
[17]  Golabadi M., Golkar P. and Ercisli S. (2017). Estimation of gene action for fruit yield and morphological traits in greenhouse cucumber by mating designs. Acta Sci. Pol. Hortorum Cultus. 16(4): 3-12.
 
[18]  Queiroz DR., Farias FJC., Vasconcelos JJC., Carvalho LP., Neder DG., Souza LSS., Farias FC. and Teodoro PE. (2017). Diallel analysis for agronomic traits in upland cotton in semi-arid zones in Brazil. Genetics and Molecular Research. 16(3): 1-8.
 
[19]  Santos RM., De Melo NF., Da Fonseca MAJ. and Queiroz MAÁ. (2017). Combining ability of forage watermelon (citrullus lanatus var. Citroides) germplasm. Rev. Caatinga Mossoró. 30(3): 768-775.
 
[20]  Farshadfar E. and Amiri R. (2015). Genetic analysis of physiological indicators of drought tolerance in bread wheat using diallel technique. Genetika. 47(1): 107-118.
 
[21]  Fasahat P., Rajabi A., Rad JM. and Derera J. (2016). Principles and utilization of combining ability in plant breeding. Biom. Biostat. Int. J. 4 (1): 1-24.
 
[22]  Feyzian E., Dehghani H., Rezai AM. and Javaran JM. (2009). Diallel cross analysis for maturity and yield-related traits in melon (Cucumis melo L.). Euphytica. 168: 215-223.
 
[23]  Gvozdanović-Varga J., Vasić M., Milić D. and Červenski J. (2011). Diallel cross analysis for fruit traits in watermelon. Genetika. 43(1): 163-174.
 
[24]  Bahari M., Rafii MY., Saleh GB. and Latif MA. (2012). Combining ability analysis in complete diallel cross of watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai). The Scientific World Journal. 6 p.
 
[25]  El-Tahawey MAFA., Kandeel AM., Youssef SMS. and Abd El-Salam MMM. (2015). Heterosis, potence ratio, combining ability and correlation of some economic Traits in diallel crosses of pumpkins. Egypt. J. Plant Breed. 19 (2):419 – 439.
 
[26]  Golabadi M., Golkar P. and Abdolreza E. (2015). Combining ability analysis of fruit yield and morphological traits in greenhouse cucumber (Cucumis sativus L.). Cana. J. Plant Sci. 95(2): 377-385.
 
[27]  Ogbu VO., Ogbonna PE., Onyia VN. and Okechukwu EC. (2016). Yield improvement of egusi melon (colocynthis citrillus L.) through intergeneric hybridization with watermelon (citrillus lanatus L.). The J. Anim. Plant Sci. 26(5): 1291-1297.
 
[28]  Griffing B. (1956). Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci. 9(4): 463-493.
 
[29]  Zeinanloo A, Shahsavari A, Mohammadi A. and Naghavi MR. (2009). Variance component and heritability of some fruit characters in olive (Olea europaea L.). Scientia. Horticulturae. 123: 68-72.
 
[30]  Mohammadi AA., Saeidi G. and Arzani A. (2010). Genetic analysis of some agronomic traits in flax (Linum usitatissimum L.). Aust. J. Crop Sci. 4(5): 343-352.
 
[31]  Wannows AA., Sabbouh MY. and AL-Ahmad SA. (2015). Generation mean analysis technique for determining genetic parameters for some quantitative traits in two maize hybrids (Zea mays L.). Jordan Journal of Agricultural Sciences. 11(1): 59-73.
 
[32]  Al-Naggar AMM., Shabana R., Atta MMM. and Al-Khalil TH. (2015). Response of genetic parameters of low-N tolerance adaptive traits to decreasing soil-N rate in maize (Zea mays L.). App. Sci. Report. 9 (2): 110-122.
 
[33]  Jatoth JL., Dangi KS. and Kumar SS. (2014). Gene action for quantitative traits through generation means analysis in sesame (Sesamum indicum). Indian Journal of Agricultural Sciences. 84 (11): 1369-1375.
 
[34]  Verma A. and Singh Y. (2017). Generation mean analysis of horticultural traits in mid-late cauliflower (Brassica oleracea L. var. botrytis) under sub temperate conditions of Western Himalayas. Plant Breeding: 97-108.
 
[35]  Poodineh M. and Rad NMR. (2015). Genetic components for physiological parameters estimates in bread wheat (Triticum aestivum L.). ARRB 7(3): 163-170.
 
[36]  Gopikannan M. and Ganesh SK. (2014). Genetic dissection of yield and yield components related to sodicity tolerance in rice (Oryza sativa L.). Aust. J Crop. Sci. 8(12): 1571-1578.
 
[37]  Hannachi A., Fellahi Z., Rabti A., Guendouz A. and Bouzerzour H. (2017). Combining ability and gene action estimates for some yield attributes in durum wheat (Triticum turgidum l. Var. Durum). J Fundam Appl Sci. 9(3): 1519-1534.
 
[38]  Nataša L., Sofija P., Miodrag D., Hristov N., Vukosavljev M. and Srećkov Z. (2014). Diallel Analysis for Spike Length in Winter Wheat. Turkish Journal of Agricultural and Natural Sciences. 2: 1455-1459.
 
[39]  Banerjee PP. and Kole PC. (2009). Combining ability analysis for seed yield and some of its component character in sesame (Sesamum indicum L.). Int. J. Plant Breed. Genet. 1-11.