World Journal of Agricultural Research. 2017, 5(3), 147-155
DOI: 10.12691/WJAR-5-3-4
Original Research

Bioethanol Production from Switchgrass Grown on Coal Fly Ash-amended Soil

Olushola M. Awoyemi1, and Ekundayo O. Adeleke1

1Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA

Pub. Date: May 22, 2017

Cite this paper

Olushola M. Awoyemi and Ekundayo O. Adeleke. Bioethanol Production from Switchgrass Grown on Coal Fly Ash-amended Soil. World Journal of Agricultural Research. 2017; 5(3):147-155. doi: 10.12691/WJAR-5-3-4


Potentially toxic concentrations of certain mineral elements may be taken up in plant biomass produced on coal fly ash (CFA) contaminated soil. This raises concerns about efficiencies of downstream processes, such as hydrolysis and fermentation involved in biomass conversions to bioethanol. A greenhouse pot experiment was conducted to assess bioethanol yield from switchgrass biomass produced on CFA-amended soil (0, 7.5 and 15 %, w/w CFA/soil). Separate aliquots of the CFA-amended soils were either inoculated with isolate of arbuscular mycorrhizal fungi (AMF), Rhizophagus clarus, or fortified with reduced glutathione (GSH). Mineral elements in the CFA-amended soils and plant tissues were determined using ICP-OES. Shoot samples of harvested biomass were subjected to microwave-assisted acid pretreatment, enzymatic hydrolysis and fermentation. The reducing sugar (glucose) and bioethanol in the biomass hydrolysate were determined by spectrophotometry. Results showed that CFA had a concentration-dependent increase on the levels of the mineral elements in soils that were amended. Subsequent uptake of the mineral elements in switchgrass tissues was modulated by CFA-soil amendment, AMF inoculation, and GSH fortification. The glucose concentrations in biomasss hyzrolysate of switchgrass grown on 7.5 and 15% CFA-amended soils were significantly higher (p < 0.05) than the unamended (control) soil without significant adverse effect on the bioethanol yield. The bioethanol concentration (µg/mg DW) in the fermented hydrolysate of switchgrass grown on 15% CFA-amended soil (26.63) was higher than the control soil (24.46). Likewise, AMF and GSH enhanced bioethanol yield from hydrolysate of switchgrass biomass grown on the CFA-amended soil. Our results indicated that coupling CFA-amended soil with either AMF or GSH can enhance bioethanol yield.


coal fly ash, bioethanol, switchgrass biomass, enzymatic hydrolysis, fermentation, mineral element translocation


Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  D.C. Adriano, A.L. Page, A.A. Elseewi, A.C. Chang, I.A. Satraughan, Utilisation and disposal of fly ash and other coal residues in terrestrial ecosystems: a review, J. Environ. Qual. 9 (1980) 333-345.
[2]  O. Babajide, L. Petrik, N. Musyoka, B. Amigun, F. Ameer, Use of coal fly ash as a catalyst in the production of biodiesel, Petrol Coal 52 (4) (2010) 261-272.
[3]  E.K. Dzantor, Potentials for beneficial utilization of coal fly ash for biofuel feedstock production on marginal/degraded lands, in: R.K. Behl, R.N. Chibbar, S. Jain, V.P. Bahl, N.E. Bassam (Eds.), Renewable Energy, Sources and Applications, Agrobios (International) Publishers, Jodhpur, India, 2013, p. 346-360.
[4]  Q. Wang, Y. Dong, Y. Cui, X. Liu, Instances of soil and crop heavy metal contamination in China, Soil Sediment Contam. 10 (5) (2001) 497-510.
[5]  C. Lin, W. Lu, Y. Wu, Agricultural soils irrigated with acidic mine water: Acidity, heavy metals, and crop contamination, Aust. J. Soil Res. 43 (7) (2005) 819-826.
[6]  J. Xie, Q. Weng, G. Ye, S. Luo, R. Zhu, A. Zhang, X. Chen, C. Lin, Bioethanol Production from Sugarcane Grown in Heavy Metal-Contaminated Soils, BioResour. 9 (2) (2014) 2509-2520.
[7]  L. Jamai, K. Ettayebi, Y. J. El-Yamani, M. Ettayebi, Production of ethanol from starch by free and immobilized Candida tropicalis in the presence of α-amylase, Bioresour. Technol. 98 (14) (2007) 2765-2770.
[8]  F.W. Bai, W.A. Anderson, M. Moo-Young, Ethanol fermentation technologies from sugar and starch feedstocks, Biotechnol. Adv. 26 (1) (2008) 89-105.
[9]  A. Demirbas, Biofuels sources, biofuel policy, biofuel economy and global biofuel projections, Energy Convers. Manage. 49 (8) (2008) 2106-2116.
[10]  S. Amin, Review on biofuel oil and gas production processes from microalgae, Energy Convers. Manage. 50 (7) (2009) 1834-1840.
[11]  C.N. Ibeto, A.U. Ofoefule, K.E.A. Agbo, Global overview of biomass potentials for bioethanol production: A renewable alternative fuel, Trends Appl. Sci. Res. 6 (5) (2011) 410-425.
[12]  J. Goldemberg, Ethanol for a sustainable energy future, Science 315 (5813) (2007) 808-810.
[13]  O.J. Sánchez, C.A. Cardona, Trends in biotechnological production of fuel ethanol from different feedstocks, Bioresour. Technol. 99 (13) (2008) 5270-5295.
[14]  S.T. Anderson, The demand for ethanol as a gasoline substitute, J. Environ. Econ. Manage. 63 (2) (2008) 151-168.
[15]  P.F.A. Shikida, A. Finco, B.F. Cardoso, A Comparison Between Ethanol and Biodiesel Production: The Brazilian and European Experiences, in: V.A. Galante, D. Rahmeier, D. Bentivoglio, M.A. Rasetti, D. Padula, (Eds.), Liquid Biofuels: Emergence, Development and Prospects, Lecture Notes in Energy 27, Springer-Verlag London, p. 25-53.
[16]  Foreign Agricultural Service (FAS), U.S. Ethanol Exports Rebound in 2014. International Agricultural Trade Report, United States Department of Agriculture, April 28, 2015 Accessed 2nd March, 2017.
[17]  M.R. Schmer, K.P. Vogel, R.B. Mitchell, R.K Perrin, Net energy of cellulosic ethanol from switchgrass, PNAS, 105 (2) (2008) 464-469.
[18]  P.R. Adler, M.A. Sanderson, A.A. Boateng, P.J. Weimer, H.G. Jung, Biomass Yield and Biofuel Quality of Switchgrass Harvested in Fall or Spring, J. Agron. 98 (2006) 1518-1525.
[19]  G.E. Varvel, K.P. Vogela, R.B. Mitchell, R.F. Follett, J.M. Kimble, Comparison of corn and switchgrass on marginal soils for bioenergy, Biomass Bioenerg. 32 (2008) 18-21.
[20]  M.K. Kering, J.T. Biermacher, T.J. Butler, J. Mosali, J.A. Guretzky, Biomass Yield and Nutrient Responses of Switchgrass to Phosphorus Application, Bioenerg. Res. 5 (2012) 71-78.
[21]  C. Brown, J. Skousen, T. Griggs, Yield of switchgrass on reclaimed surface mines, JASMR. 2 (1) (2013) 38-48.
[22]  P. Perego, S.B. Howell, Molecular mechanisms controlling sensitivity to toxic metal ions in yeast, Toxicol. Appl. Pharmacol. 147 (2) (1997) 312-318.
[23]  D. Pearce, F. Sherman, Toxicity of copper, cobalt, and nickel salts is dependent on histidine metabolism in the yeast Saccharomyces cerevisiae, J. Bacteriol. 181 (1999) 4774-4779.
[24]  M. Azenha, M.T. Vasconcelos, P. Moradas-Ferreira, The influence of Cu concentration on ethanolic fermentation by Saccharomyces cerevisiae, J. Biosci. Bioeng. 90 (2) (2000) 163-167.
[25]  P.J. Weimer, B.S. Dien, T.L. Springer, K.P. Vogel, In vitro gas production as a surrogate measure of the fermentability of cellulosic biomass to ethanol, Appl. Microbiol. Biotechnol. 67 (2005) 52-58.
[26]  B.S. Dien, H.G. Jung, K.P. Vogel, M.D. Casler, J.F.S. Lamb, P.J. Weimer, L. Iten, R.B. Mitchell, G. Sarath, Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass, Biomass Bioenerg. 30 (2006) 880-891.
[27]  United States Environmental Protection Agency, Microwave assisted acid digestion of sediments, sludges, soils, and oils, USEPA method 3051A, 2007. Accessed 14th March, 2015.
[28]  United States Environmental Protection Agency, Microwave Assisted Digestion of Siliceous and Organically Based Matrices, USEPA method 3052, 3rd ed., U.S. EPA, Office of Solid Waste and Emergency Response, Washington, D.C. 1996. Accessed 15 December 2014.
[29]  C. Shih, Determination of saccharides and ethanol from biomass conversion using Raman spectroscopy: effects of pretreatment and enzyme composition, Graduate Theses and Dissertation, 2010, Paper 11596.
[30]  M. Brodeur-Campbell, J. Klinger, D. Shonnard, Feedstock mixture effects on sugar monomer recovery following dilute acid pretreatment and enzymatic hydrolysis, Bioresour. Technol. 116 (2012) (2012) 320-326.
[31]  I.A.M. Yunusa, P. Loganathan, S.P. Nissanka, V. Manoharan, M.D. Burchett, C.G. Skilbeck, D. Eamus, Application of Coal Fly Ash in Agriculture: A Strategic Perspective, Crit. Rev. Environ. Sci. Technol. 42 (6) (2012) 559-600.
[32]  C.R. Lal, S.K. Jha, R.C. Tripathi, R.E. Masto, V.A. Selvi, Remediation of fly ash landfills through plantation, in: Remediation Autumn, Wiley Periodicals, Inc. 2008, p. 71-90.
[33]  M. Basu, M. Pande, P.B.S. Bhadoria, S.C. Mahapatra, Potential fly-ash utilisation in agriculture: A global review, Prog. Nat. Sci. 19 (2009) 1173-1186.
[34]  C.D. Tsadilas, Agricultural use of fly ash: Expected benefits and consequences. WACAU-2014, Israel International Workshop on Agricultural Coal Ash Uses, 27 – 29th May 2014. Accessed 3rd March 2015.
[35]  G. Roy, V.C. Joy, Dose-related effect of fly ash on edaphic properties in laterite cropland soil, Ecotoxicol. Environ. Saf. 74 (2011) 769-775.
[36]  A. Dash, A. Pradhan, S. Das, S. Mohanty, Fly ash as a potential source of soil amendment in agriculture and a component of integrated plant nutrient supply system, J. Ind. Pollut. Contr. 31(2) (2015) 249-257.
[37]  M.M. Nass, T.M. Lexmond, M.L. van Beusichem, M. Janssen‐Jurkovíc, Long‐term supply and uptake by plants of elements from coal fly ash, Commun. Soil Sci. Plant Anal. 24 (9-10) (2008) 899-913.
[38]  T. Swamy, N. Dash, G. Nahak, B. Deo, R. Sahu, Effect of Coal Fly Ash on Growth, Biochemistry, Cytology and Heavy Metal Content of Allium cepa L, NY Sci. J. 3 (5) (2010) 10-16.
[39]  J.J. Brejda, D.H. Yocom, L.E. Moser, S.S. Waller, Dependence of 3 Nebraska Sandhills Warm-Season Grasses on Vesicular-Arbuscular Mycorrhizae, J. Range Manage. 46 (1) (1993) 14-20.
[40]  R.B. Clark, Differences among mycorrhizal fungi for mineral uptake per root length of switchgrass grown in acidic soil, J. Plant Nutr. 25 (8) (2002) 1753-1772.
[41]  D.J. Parrish, J.H. Fike, The Biology and Agronomy of Switchgrass for Biofuels, Crit. Rev. Plant Sci. 24 (5-6) (2005) 423-459.
[42]  A. Balliu, G. Sallaku, B. Rewald, AMF Inoculation Enhances Growth and Improves the Nutrient Uptake Rates of Transplanted, Salt-Stressed Tomato Seedlings, Sustainability 7 (12) (2015) 15967-15981.
[43]  A. Hashem, E.F. Abdul-Allah, A.A. Alqarawi, A.A. Al-Huqail, S. Wirth, D. Egamberdieva, The Interaction between Arbuscular Mycorrhizal Fungi and Endophytic Bacteria Enhances Plant Growth of Acacia gerrardii under Salt Stress, Front. Microbiol. 7 (2016) 1089, p. 15.
[44]  N. Badr, M. Fawzy, K.M. Al-Qahtani, Phytoremediation: An Ecological Solution to Heavy-Metal-Polluted Soil and Evaluation of Plant Removal Ability, World Appl. Sci. J. 16 (9) (2012) 1292-1301.
[45]  S.N. Majid, A.I. Khwakaram, G.A. Mam-Rasul, Z.H. Ahmed, Bioaccumulation, Enrichment and Translocation Factors of some Heavy Metals in Typha Angustifolia and Phragmites Australis Species Growing along Qalyasan Stream in Sulaimani City /IKR, J. Zankoy Sulaimani 16A (4) (2014) 93-109.
[46]  R.A. Sutherland, C.A. Tolosa, F.M.G. Tack, M.G. Verloo, Characterization of selected element concentration and enrichment ratios in background and anthropogenically impacted roadside areas, Arch. Environ. Contam. Toxicol. 38 (2000) 428-438.
[47]  K.B. Mmolawa, A.S. Likuku, G.K. Gaboutloeloe, Assessment of heavy metal pollution in soils along major roadside areas in Botswana, Afric. J. Environ. Sci. Technol. 5 (2011) 186-196.
[48]  M. Srivastava, L.Q. Ma, J.A.G. Santos, Three new arsenic hyperaccumulating ferns, Sci. Total Environ. 364 (2006) 24-31.
[49]  J. Yoon, X. Cao, Q. Zhou, L.Q. Ma, Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 368 (2006) 456-464.
[50]  A.R. Usman, H.M. Mohamed, Effect of microbial inoculation and EDTA on the uptake and translocation of heavy metal by corn and sunflower, Chemosphere 76 (2009) 893-899.
[51]  M. Ghosh, S.P. Singh, A comparative study of cadmium phytoextraction by accumulator and weed species, Environ. Pollut. 133 (2005) 365-371.
[52]  L.M. Cervilla, B. Blasco, J.J. Rios, L. Romero, J.M. Ruiz, Oxidative Stress and Antioxidants in Tomato (Solanum lycopersicum) Plants Subjected to Boron Toxicity, Ann. Bot. 100 (2007) 747-756.
[53]  M. Ayvaz, M.K. Avci, C. Yamaner, M. Koyuncu, A. Guven, K. Fagerstedt, Does excess boron affect the malondialdehyde levels of potato cultivars? Eurasia. J. Biosci. 7 (2013) 47-53.
[54]  R.O. Nable, G.S. Bañuelos, J.G. Paull, Boron toxicity, Plant Soil 193 (1997) 181-198.
[55]  P.B. Woodbury, G. Rubin, D.C. McCune, L.H. Weinstein, E.F. Neuhauser, Assessing Trace Element Uptake by Vegetation on a Coal Fly Ash Landfill, Water Air Soil Pollut. 111 (1) (1999) 271-286.
[56]  P.E. Rothrock, G.C. Manning, Report: Potential Impact of Fly-ash Groundwater Contamination on Vegetation of Cowles Bog, Indiana Dunes National Lakeshore, Randall Environmental Center Taylor University Upland, IN 46989-1001 August 2011. Accessed 25th February, 2017.
[57]  M. Tutt, T. Kikas, J. Olt, Influence of different pretreatment methods on bioethanol production from wheat straw, Agron. Res. Biosyst. Eng. Special Issue 1 (2010) 269-276.
[58]  I.Y. Sunwoo, C.H. Ra, G.T. Jeong, S.K. Kim, Evaluation of ethanol production and bioadsorption of heavy metals by various red seaweeds, Bioproc. Biosyst. Eng. 39 (6) (2016) 915-923.
[59]  T. Vintila, A. Negrea, H. Barbu, R. Sumalana, K. Kovacsd, Metal distribution in the process of lignocellulosic ethanol production from heavy metal contaminated sorghum biomass, J. Chem. Technol. Biotechnol. 91 (2016) 1607-1614.
[60]  P. Puligundla, S. Oh, C. Mok, Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: a review, Carbon Lett. 17 (1) (2016) 1-10.
[61]  N.J. Cao, Q. Xu, C.S. Chen, C.S. Gong, F. Chen, Cellulose hydrolysis usingv zinc chloride as a solvent and catalyst, Appl. Biochem. Biotechnol. 45 (1) (1994) 521-530.
[62]  G. Geiger, H. Brandi, G. Furner, R. Schulin, The effect of copper on the activity of cellulose and β-glucosidase in the presence of montmorillonite or Al-montmorillonite, Soil Biol. Biochem. 30 (1998) 1537-1544.
[63]  A. Karaca, S.C. Cetin, O.C. Turgay, R. Kizilkaya, Effects of Heavy Metals on Soil Enzyme Activities, in: I. Sherameti, A. Varma (Eds.), Soil Heavy Metals, Springer-Verlag Berlin Heidelberg, Soil Biol. 19 (2010) 237-262.
[64]  S. Shakoor, S. Aftab, A. Rehman, Characterization of Cellulose Degrading Bacterium, Bacillus megaterium S3, Isolated from Indigenous Environment, Pak. J. Zool. 45 (6) (2013) 1655-1662.
[65]  R.A. Balsamo, W.J. Kelly, J.A. Satrio, M.N. Ruiz-Felix, M. Fetterman, R. Wynn, K. Hagel, Utilization of Grasses for Potential Biofuel Production and Phytoremediation of Heavy Metal Contaminated Soils, Int. J. Phytoremediat. 17 (5) (2015) 448-455.